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Abstract—Accurate prediction of wireless network perfor-
mance is important when performing link adaptation or resource
allocation. However, the complexity of interference interactions
at MAC and PHY layers, as well as the vast variety of possible
wireless configurations make it notoriously hard to design explicit
performance models.

In this paper, we advocate an approach of “learning by
observation” that can remove the need for designing explicit
and complex performance models. We use machine learning
techniques to learn implicit performance models, from a limited
number of real-world measurements. These models do not
require to know the internal mechanics of interfering Wi-Fi links.
Yet, our results show that they improve accuracy by at least 49%
compared to measurement-seeded models based on SINR. To
demonstrate that learned models can be useful in practice, we
build a new algorithm that uses such a model as an oracle to
jointly allocate spectrum and transmit power. Our algorithm is
utility-optimal, distributed, and it produces efficient allocations
that significantly improve performance and fairness.

I. INTRODUCTION

We have witnessed a rapid adoption of Wi-Fi technology for

home, enterprise and hotspot wireless networks. The result

is often dense deployments of interfering Wi-Fi links that

contend for a limited amount of spectrum. At the same time,

these networks are under an ever increasing pressure to deliver

a higher performance. Recent and ongoing IEEE amendments,

such as 802.11n and 802.11ac, address this demand by in-

cluding techniques such as wider channel bandwidths and

faster modulation schemes. However, these enhancements put

even more stress on the scarce spectrum resource and are

sensitive to the operating conditions to deliver the effective

performance improvements. Wider channels increase the spec-

trum usage and can create harmful interference. Higher mod-

ulation schemes require a higher SNR and less interference to

correctly decode the transmissions. It is therefore increasingly

important to carefully allocate resources such as spectrum and

transmit power.

Efficient resource allocation requires realistic models. How-

ever, 802.11 networks – and especially those using newer

amendments with variable bandwidth – are notoriously hard

to model. They exhibit several performance intricacies due

to complex interactions between the MAC and PHY layers,
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Figure 1: Black box representation of a link. It takes various con-
figuration and topological features related to a given link and its
neighbors as inputs, and it outputs a throughput.

which manifest themselves in frequency, spatial and time

domains. For example, using a wide channel bandwidth creates

interference in frequency domain, but using a narrow band-

width increases packet transmission times, which can create

more interference in time domain (due to the rate anomaly

problem of MAC layers based on CSMA/CA [10]). In addition,

for a fixed transmit power, a narrow bandwidth packs more

Watts per Hertz, which improves the transmission range [6],

but also increases interference in spatial domain.

Existing performance models for 802.11 networks, such as

the Bianchi model [1], usually adopt explicit and bottom-up

approaches; they model the actual mechanics of the protocol

(for example, the CSMA/CA procedure of the MAC layer

in [1]) in order to compute throughput figures. Unfortunately,

these models do not capture heterogeneous PHY layer config-

urations, such as variable channel widths. In contrast, textbook

models based on the SINR (signal to interference-plus-noise

ratio) can be used to capture some of the phenomena occurring

at the PHY layer. However, in turn, these models do not take

the MAC layer into account and, as we will observe, they do

not capture the actual performance of interfering links when

CSMA/CA is employed.

In this paper we argue that, as far as quantitative perfor-

mance predictions are concerned, it can be more efficient to

learn implicit and top-down models directly from a set of

observed measurements. We treat Wi-Fi links as black boxes

with potentially unknown internal mechanics (see Figure 1).

Such a black box takes some parameters as inputs (such as

the spectral configurations of a link and its neighbors, as

well as topological features such as current measurements of

channel qualities), and it outputs a throughput value. Our goal

is to find any function providing an accurate mapping between

(potentially never-observed) inputs and outputs. In particular,

we do not attempt to seed a pre-existing model (such as SINR-

based or Markov-based) with measurements. Rather, we show



that in some cases it can be more efficient to learn the model

itself from a limited set of measurements.

Constructing useful black boxes is difficult for two main

reasons. First, they must capture a fair level of complexity; the

cross-layer relationships between the various input parameters

and the obtained throughput are usually complex, multi-modal,

nonlinear and noisy. Second, it is infeasible to simply measure

the link performance for each possible combination of inputs.

Instead of conducting exhaustive measurements, we observe

that a statistical representation of these black boxes can

be learned by observing a limited number of input/output

combinations. Using supervised machine learning techniques,

it is possible to generalize the observations made on this

limited subset of measurements, while still capturing the

complex relationships between the inputs. We build such

implicit models using real-world measurements and we test

them systematically, by asking them to predict the throughput

for links and configurations that have never been observed

during the initial measurement phase. We observe that our

learned black boxes improve prediction accuracy over models

based on the SINR, which is usually the preferred metric for

allocating resources such as spectrum or transmit power.

Finally, we demonstrate the usefulness of this “learning

by observation” approach, by using one such black box as

an oracle for allocating spectrum and transmit power in a

dynamic fashion. In particular, we design and implement a

complete, utility-optimal algorithm for the joint allocation of

spectrum and transmit power. Our algorithm does not rely

on a central controller, and requires only local collaboration

between neighboring access points (APs). Yet, it converges to

a global, network-wide solution of the utility maximization

problem. We observe on a testbed deployment that it reacts

well to various optimization objectives, such as maximizing

throughput and/or fairness. In this context, our black box

oracle is instrumental for capturing the intricate interference

patterns and finding efficient configurations. To the best of our

knowledge, it is the first implementation of a utility-optimal

algorithm for spectrum allocation.

The paper is organized as follows. In Section II, we motivate

our approach through a few illustrative examples. In Sec-

tion III, we present our method to learn black box performance

models. We evaluate the accuracy and generalization of our

models in Section IV. We present our algorithm for spectrum

and transmit power allocation in Section V and evaluate its

performance in Section VI. We discuss the limitations of our

models in Section VII. Finally, we present related work in

Section VIII and give some concluding remarks in Section IX.

II. MOTIVATION

In this section, we first detail some of the complexities

inherent to the problem of allocating variable-width spectrum

chunks to wireless nodes. In particular, we show why the

performance achieved by a link depends in a highly complex

fashion on spectrum configurations adopted by this link and

its neighbors. Second, we give an example where SINR-based

models – the prevailing class of models for adapting PHY
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Figure 2: Two interfering links (a), and some possible spectral
configurations (b). We propose a method to learn models that can
predict the performance of the links in such arbitrary conditions.

layer parameters – fail to capture the actual performance of

802.11 networks.

A. An Introductory Two-link Example

Consider a simple setup with two Wi-Fi links l and k (which

can be composed of two access points and two clients), shown

in Figure 2(a). The two access points have arbitrary traffic

loads (e.g., due to arbitrary exogenous arrivals). Consider now

the problem of allocating a combination of channel center

frequencies and channel widths to these two links. Assuming

that the two possible channel widths are 20 MHz and 40 MHz

(as in 802.11n), and that there is 40 MHz of total spectrum

available, we list some possible allocations on Figure 2(b)

(see [27] for an extensive treatment of such an example).

Efficiently selecting configurations would clearly benefit from

a model which could, for each possible combination of con-

figuration, predict the throughput achievable by each link. A

model explicitly designed for this task should take at least the

following qualitative aspects into account:

• If the links are sufficiently far apart, the spectrum can be

re-used, and both links can use a bandwidth of 40 MHz

(allocation (i)).

• If the two links are close to each other, allocation (i)

results in transmission arbitration in time-domain. Instead,

it might be more efficient to opt for allocation (ii) in

order to use orthogonal bands and reduce the time spent

in backoff. In this case, however, some interference may

still be observed due to power leakage creating adjacent-

channel interference.

• If the links are far apart but link l has a poor channel qual-

ity, it can be beneficial to use allocation (iii). This is due

to that, for a given transmit power, a narrow bandwidth

packs more Watts per Hertz, which effectively increases

the SNR and the transmission range [6]. Yet, using a

narrow bandwidth also has the effect of increasing the

time required to transmit a packet, which exacerbates the

rate anomaly suffered by 802.11 [10], and can potentially

decrease the overall efficiency.



• If, for instance, link k has a low traffic load, it does not

need much spectrum and does not create much contention.

In that case, allocation (iv) may be efficient.

• Finally, depending on the traffic loads, using allocation

(v) with partially overlapping channels has the potential

to create more efficient spectral re-use patterns [22].

Clearly, as also noted in [27], performance depends in a highly

complex way on the actual topology, channel qualities, spectral

configurations, etc. In particular, it is especially hard to predict

in quantitative terms how a given configuration will perform.

The complexity is further exacerbated if the nodes can adapt

their transmit powers; although this feature can potentially

improve spectral re-use [5], it is rarely used in practice as

its impact is difficult to predict [21].

Due to the difficulty of predicting performance in the

presence of complex interference patterns, the vast majority

of works proposing models or optimizations for the PHY

layer (e.g., [21], [22], [27]) are reduced to using SINR-based

models. However, SINR models are not meant to capture

802.11 performance and, as we will see now, they can fail

to capture important performance patterns.

B. An Example where SINR Models are Inappropriate

We now consider a real example from our testbed, again

with two interfering links l and k. In this case, both links use

20 MHz of spectrum with the same center frequency (i.e., we

consider a simpler setup with no spectral separation). The two

links send saturated UDP traffic with packets of 1500 B, and

they both use 802.11n in the 5.8 GHz band (void of external

interference), using the same 2×2 MIMO configuration. Link

l has a fixed transmit power set to 12 dBm, and k varies

its transmit power from 3 dBm to 21 dBm. We measure the

throughput obtained by l for two different pairs of links (l, k)
on an indoor testbed (we give more details on our testbed and

experimental setup in Section IV-A). For comparison, we also

compute the information-theoretic capacity cl of link l as

cl = constant · log2 (1 + SINRl), (1)

where the constant factor accounts for the bandwidth and

MIMO configuration, and SINRl denotes the SINR of link

l. On such a two-link setup, the SINR is given by

SINRl =
Pl←l

N0 + Pl←k

, (2)

where Pl←l (resp. Pl←k) denotes the received power at the

receiver of l (as measured by our NICs) from the transmitter

of l (resp. from the transmitter of k), and N0 is the background

noise (also reported by our NICs).

We show both the measured throughput and the theoretic

capacity for the two link pairs on Figure 3. The (schematized)

topologies are shown at the top of the figure. For the first

link pair, the throughput obtained by l decreases by about

50% when k increases its transmit power. This is due to an

increased likelihood of collision at l’s receiver and carrier-

sensing activation at l’s transmitter, as k increases its effective

interference range. This qualitative trend is captured by the
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Figure 3: Measured throughput and theoretical capacity of l, when
k varies its transmit power. The results are shown for two different
pairs of links (l1, k1) and (l2, k2) from our testbed.

theoretical capacity, which decreases when Pl←k increases.

However, in this case, the magnitude of the theoretical capacity

is much higher than the actual throughput of the link.

The situation is different (and more surprising at first sight)

for the second link pair. Here, we can decompose the measured

performance in three distinct regimes (represented by three

shaded regions in the figure). When k’s transmit power is low,

the links are nearly independent and l suffers little interference

from k. When k’s transmit power grows to intermediate values,

k starts interfering with l. In this case, l carrier-senses k, and

interference mitigation is done in time-domain via CSMA/CA.

However, a closer inspection of packets reveals that k itself

does not have a good channel quality (as it uses only an

intermediate transmit power), which forces it to use relatively

robust (and slow) modulations. As a result, in this intermediate

regime, k consumes a significant portion of the time to transmit

its packets, which reduces l’s throughput (due to the rate-

anomaly). Finally, when k uses a large transmit power, it also

uses faster modulations, which has the apparently paradoxical

effect of increasing l’s throughput.

In this second example, the information-theoretic formu-

lation for the capacity does not capture all these “802.11-

specific” cross-layer and multi-modal effects. Instead, it shows

a monotonic dependency on transmit power, because it treats

the case of Gaussian channels subject to constant and white

noise interference, with no intent of modeling 802.11 networks.

In fact, in the cases where a time-sharing scheme such as

CSMA/CA is employed, links often have the opportunity to

transmit alone on the channel, thus without observing any

interference at all during their transmission1.

From these two simple examples, we observe that the

theoretical capacity (i) might have a significantly different

magnitude than the observed throughput, and (ii) might not

capture the non-monotonic, multi-modal complex behaviors

due to cross-layer interactions occurring when links are inter-

fering (importantly, note that this observation holds for any

model that is monotonic in the SINR).

Despite these problems – and despite the fact that SINR

1This is also the reason the actual throughput might be largely above the
predicted capacity.
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models are usually not considered strong predictors of wireless

performance – these models are still the models of choice for

allocating resources at the PHY layer, due to their general-

ity: By adapting judiciously the power values in the SINR

Equation (2), it is possible to use variable transmit powers

(as we just did), but also partially overlapping channels [22]

and variable bandwidths [27] as inputs of SINR models.

In addition, a large body of theoretic literature on optimal

resource allocation also relies on SINR models in various

contexts [3], [9], [14], [16], [18], [21], [25]. By contrast,

MAC layer models such as Bianchi’s are often accurate with

homogeneous PHY configurations, but cannot be used to

capture such heterogeneous PHY configurations.

III. LEARNING PERFORMANCE MODELS

A. Approach

In the previous section, we observed that out-of-the-box

SINR-based models might produce capacity predictions with a

significantly different magnitude than the observed throughput.

Therefore, a natural step to improve the accuracy is to seed

(or fit) some parameters in SINR-based models (for instance,

a factor controlling the magnitude of the prediction) to the

observations of actual measurements. The approach of seeding

a model with measurements has been taken in [20], [27], [28]

and others (see Section VIII for a discussion).

In this paper, we also rely on an initial measurement phase.

However, contrary to prior approaches, we do not try to fit

or to seed a previously existing model (such as, for instance,

SINR-based or Markov-based). Instead, we directly learn the

model itself from the data, using supervised machine learning.

Our overall approach is summarized in Figure 4, and it consists

of four main steps:

1) Measurement phase: This phase consists in performing

N short-duration controlled experiments. Considering

again the black box representation of Figure 1 (although

generalized for more than two links), each experiment

consists in measuring the throughput of a given link l,
for one particular combination of inputs (which we call

features). This phase is relatively short; we observe in

Section IV-D that it is possible to “learn” our entire indoor

testbed with reasonable accuracy in less than 6 hours.

2) Learning phase: Once the measurements are obtained,

this phase consists in finding a mathematical function that

maps the features to observed throughputs. The function

should be d-dimensional if there are d features, and it

should approximate the throughput well on the measured

data points. However, to be useful, it must not overfit

existing measurements, which are intrinsically noisy. In-

stead, it should generalize to unseen combinations of

input features (which can potentially relate to unseen

nodes and links). Supervised machine learning provides

us with precisely the tools to handle this challenge.

3) Black box representation: Once a function has been

found which is both accurate and generalizable, we can

discard the measurements and use the function itself to

obtain throughput predictions.

4) Usage in resource allocation: This step is the operational

phase. If we target distributed resource allocation, the

black box can be used as an oracle by the access points

themselves. For instance, in the two-links example of

Figure 2, if l collaborates with k to acquire some of

the features at a certain time instant, it can produce

throughput predictions for various configurations (and

thus choose efficient configurations without probing).

Importantly, we observe in Section IV-C that learned models

continue to be useful in new or unseen environments, and that

the training procedure does not need to be repeated when new

wireless links come and go. We detail our procedure in the

remainder of this section.

B. Feature Selection

Consider a link l, for which we want to predict saturated

throughput (i.e., under saturated traffic load2) for arbitrary

spectrum and transmit power configurations, given a set Nl of

K neighboring links with arbitrary conditions, configurations

and traffic demands. Such a scenario is shown in Figure 5

for K = 2. The features must include factors that impact

the performance and are measurable by the transmitter of l
and its immediate neighbors. We selected the following list of

features, because it is known that they all have an immediate

impact on performance [5], [6], [10], [22]:

• The power received by each node of l from every

transmitting node, and the power received by every other

node, from the transmitter of l. These quantities are

denoted P1, . . . , P11 in Figure 5 (assuming downlink

traffic, from the APs to their clients). They depend on the

transmit powers and the various channel gains, and they

2We target saturated throughput because it is the maximum achievable
throughput in a given configuration. In particular, we assume that if throughput
t is achievable, then any throughput t′ < t is also achievable.
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that l could potentially obtain, given the various received powers, as
well as the physical rates, channel widths, center frequencies, and
traffic loads of k1 and k2.

can be easily measured online by commodity hardware

using RSSI (received signal strength indicator). There are

5K + 1 such power quantities in general.

• The channel widths used by l and by the links in Nl.

There are K + 1 such values.

• The spectral separations between the center frequency

used by l, and the center frequencies used by all the other

links in Nl. There are K such values.

• The K average traffic loads of the links in Nl.

• The physical rates (determined from the MCS index of

802.11n) used on each link in Nl. These are used as

features, because it is known that the modulation and

coding employed for transmission have a strong effect

on the performance of neighboring links [10]. There are

again K such values.

Adding up the above-mentioned features, we have access to

d := 9K + 2 quantities to estimate the throughput that l can

obtain in the presence of K interferers. Note that this list

of features is not an exhaustive list of the factors affecting

performance that can be known or measured by the APs. For

instance, we could make it more complete by including the

packet sizes, higher order statistics to describe the traffic loads

of interferers (instead of the mean only), or more detailed

PHY layer information (e.g., to capture multipath effects or

frequency-selective fading3). Including more features could

further increase the predictive power and generality of the

learned models. However, the features selected here already

allow us to build useful models, while having the advantage

of being simple and easy to acquire with commodity hardware.

C. Measurement Phase

The initial measurement phase consists of N measurements

with different combinations of features. Some of the features

can be directly controlled (namely, the channel widths, spectral

separations and traffic loads) and others cannot (the received

powers depend both on the transmit powers and channel gains,

and the physical rates depend on the auto-rate mechanism

used by the APs). Each of the N measurements consists of

two sub-experiments. We first perform an experiment during

which l is silent, in order to obtain a corresponding vector

3 [12] shows that considering channel measurements at the OFDM subcar-
rier level provides substantially more information on channel quality than
crude RSSI. Unfortunately, such measurements are not available on our
wireless cards.

x ∈ R
d of features (some of which are controlled, others

are measured). We then repeat the experiment with l sending

saturated traffic, and measure its throughput tl. Our goal is to

expose the learning procedure to as wide a variety of situations

as possible. To this end, we apply the following sampling

procedure for each of the N data points.

We start by selecting a link l uniformly at random among

all the links formed by all the nodes of the network. We

then sample K random interfering links, where K itself is

randomly drawn between 0 and max K, and max K denotes

a fixed upper bound on K. For l and the K links in Nl, we

sample transmit powers and spectral configurations uniformly

at random from the set of configurations that do produce some

interference (i.e., such that each link in Nl uses a band at least

adjacent or partially overlapping with l). Finally, for each link

k in Nl, we sample a traffic load in the interval (0, h(wk)/K],
where h(wk) is a value representing the maximum throughput

achievable on an isolated link using bandwidth wk. We take

h(20 MHz) = 80 Mbps and h(40 MHz) = 130 Mbps in

our training procedure, in line with the maximum achievable

throughput of our 802.11n cards. Our goal is to predict

performance for arbitrary interfering loads, and sampling the

loads in this way allows us to expose the learning procedure to

different environments with both light and heavy contention.

In particular, we measured that the offered loads of the nodes

in Nl was above capacity (i.e., saturated) in about 54% of the

experiments (mainly due to inter-neighbors interference). The

remaining experiments consist of non-saturated conditions.

Once the configurations have been chosen, we perform

the first experiment with only the K interfering links active.

During this experiment, we measure the average physical rates

used by each of the K links in Nl, and we group all the above-

mentioned features in a vector xi. In order to vary K between

0 and max K but keep features vectors of fixed dimension d,

we append 9(max K−K) default “flag” values to xi, using -

110 dBm for all the power values, and setting all the remaining

features to zero4. We then perform the second experiment

in the same conditions, but with link l sending saturated

traffic, and we measure its achieved throughput. Each of the

two sub-experiments constituting each of the N data points

needs only to last a few seconds (in order to measure average

physical rates and throughput), and the whole procedure is

easily automated.

D. Learning

Let us write {(x1, t1), . . . , (xN , tN )} ⊂ R
d ×R for our set

of measurements. Our goal is now to find a function f : Rd →
R that maps xi to a value close to ti for each measurement i.
This is an instance of a regression problem, and we learn the

function f directly from the observed data.

Several techniques exist for learning functions from data.

We do not go into the details, rather we present the overall

characteristics of the different approaches that we considered

4The current number of interfering links K is thus an implicit feature,
encoded by the presence/absence of flag values.



in this paper, and we refer the reader to reference textbooks

for details (see e.g., [2], [13]). We consider the following

regression techniques.

Regression tree: This technique fits a binary tree to the data.

Each feature vector corresponds to a path in the tree (from

the root to a leaf), and each leaf corresponds to a (discretized)

throughput value. The resulting model is elegant, because it

yields predictions that can be evaluated by a sequence of “if-

else” clauses on the features5. However, fitting an optimal tree

is a NP-hard problem, and the obtained trees are usually sub-

optimal. It also produces hard decision thresholds, which can

affect generalization and accuracy.

Gradient Boosted Regression Trees (GBRT): This tech-

nique combines the predictions of M regression trees. Given

a feature vector x, the throughput is predicted as

t̂ = f(x) =
M∑

m=1

πmhm(x).

In the above expression, hm(x) denotes the prediction of the

m-th tree, and the πm’s are the weighting coefficients (learned

with gradient boosting [13]). We obtain the number of trees

M as well as their depth by cross-validation. Using several

trees has the potential to largely improve the predictive power

compared to a single tree, however as we will see, it might

still be subject to potential overfitting.

Support Vector Regression (SVR): For a feature vector x,

this method outputs a predicted throughput given by

t̂ = f(x) =

N∑

i=1

αik(xi,x) + b,

where the αi’s and b are the fitted parameters (obtained by

solving a convex minimization problem that accounts both

for regression error and overfitting). The function k(·, ·) is a

so-called kernel function. We generate our own SVR models

using a common kernel function known as the radial basis

function (RBF), specified by k(xi,x) = exp(−γ‖x − xi‖
2),

where γ is a parameter obtained by cross-validation. Usually,

most of the αi’s are equal to zero, so SVR requires only a frac-

tion of the initial measurements to be stored. Furthermore, this

technique has a high descriptive power, and it can efficiently

prevent overfitting.

SINR-based model: As a comparison to pure machine-

learning techniques, we also fit SINR-based models to our

measurements. In particular, we consider the following variant

to Equation (1) for computing the theoretical capacity cl of

link l:
cl = Γ · wl · log(1 + SINRl), (3)

where Γ is a constant that is fitted to measurements (using

minimization of least square error), in order to correct for the

magnitude problem mentioned in Section II. In addition, we

also use the approach proposed in [22] in order to account for

partially overlapping channels; namely, we scale each power

5For instance, on a simplistic tree of depth 2, a regression path could look
like: “if received power ≤ X and frequency offset > Y , then predict Z”.
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Figure 6: Layout of our 22-nodes wireless testbed. We also show the
different link categories and the two halves of the testbed used in the
experiments of Section IV-C2.

value appearing in the SINR Equation (2) by an appropriate

value that accounts for the spectral overlap (assuming perfect

bandpass filters). To the best of our knowledge, such models

are the only existing models that can produce performance

predictions at the same level of generality as our learned mod-

els (i.e., taking into account arbitrary spectral configurations

with variable widths and variable transmit powers). In the next

section, we evaluate the accuracy and generalizability of each

class of models.

IV. ACCURACY OF PERFORMANCE PREDICTIONS

In this section, we evaluate the accuracy and generalization

of the different learning strategies in various conditions.

A. Experimental Setup and Methodology

Experimental Setup. We use a testbed of 22 nodes spread

over an entire floor of an office building (see Figure 6). The

nodes are Alix 2D2 boards, equipped with Atheros AR9220

wireless adapters. They run the OpenWrt 10.03 Linux distri-

bution with the open source ath9k wireless drivers, and they

use the default Minstrel autorate algorithm. We employ 20
and 40 MHz channel widths with 802.11n, 2× 2 MIMO, and

10 different transmit power values in the set {3dBm, 5dBm

, . . . , 21dBm}. We use the 5.735-5.835 GHz band, which

comprises a total of 100 MHz of spectrum.

Methodology. Our objective is to test the models with

unknown combinations of features. As such, we only predict

throughputs for data points that do not appear in the N
measurements used for learning (or training). To this end, we

always split our total set of measurements into a training set

and a test set. The training set consists in the actual N mea-

surements used for learning the models and their parameters,

whereas the test set is used only once, for measuring the final

accuracy.

We gathered a trace of 8900 measurements6, with

max K = 3. This set is voluntarily larger than what is

actually needed, in order to allow us to test the effect of the

number of measurements N on the models quality.

To evaluate the goodness of the regressions for the various

models, we use the coefficient of determination7 R2. If we

6Our dataset is publicly available: http://www.hrzn.ch/data/lw-data.zip
7http://en.wikipedia.org/wiki/Coefficient of determination



have a test set with n throughput measurements t1, . . . , tn
and a given model predicts the throughputs t̂1, . . . , t̂n, then

the coefficient of determination is given by

R2 = 1−

∑
i (ti − t̂i)

2

∑
i (ti − t̄)2

,

where t̄ is the average throughput, given by t̄ = 1
n

∑
i ti.

Concretely, the R2-score quantifies how well a predictor does,

compared to the simplest baseline strategy, which always

predicts the mean throughput. It is equal to 1 if there is a

perfect match between predicted and measured throughputs.

Whereas, it can be negative if a strategy would do better by

predicting the mean throughput. In addition to the R2-score,

we also compute the root mean squared error (RMSE), defined

as RMSE =
√

1
n

∑
i (ti − t̂i)2. We used the Python machine

learning package scikit-learn [24] to learn the various

models.

B. Prediction Accuracy

In order to compare the accuracy of the different classes of

models, we perform 50 consecutive splits of our measurements

in training and test sets (50-fold cross validation). For each

split, we evaluate the R2-score and RMSE, and we show the

average and standard deviations in Figure 7(a) for each class

of model. In addition, we also show the detailed distribution

of prediction errors in Figure 7(b) for models based on SVR

and GBRT.

It appears clearly that the learned models, in particular the

ones based on SVR and GBRT, perform significantly better

than the SINR-based models. In terms of R2-score, learned

SVR and GBRT models improve the prediction accuracy by

54% and 71%, respectively, compared to SINR models (which,

we recall, are the only known class of models capturing

phenomena such as overlapping channels). In terms of error

distribution, 90% of the errors made by learned models are

between −25 Mbps and 25 Mbps, whereas 90% of the errors

made by SINR-based models are between −35 Mbps and

36 Mbps. The fact that learned models are more accurate

is remarkable; it demonstrates that, as far as performance

prediction is concerned, learning abstract models coming from

the machine learning domain can be much more efficient than

trying to fit (or seed) pre-existing specialized models.

In order to visualize the actual predictions in detail, we also

show a scatter plot of the predicted throughputs, against the

actual measured throughputs, in Figure 8. We show both the

predictions obtained by the SINR model and the learned SVR

model (for reasons that will be clear soon, we show the results

for SVR instead of GBRT, even though GBRT performs better

in this particular setting). On these plots, the closer the points

are to the diagonal, the better the prediction accuracy. Clearly,

SVR models perform much better and produce fewer outlying

predictions than SINR models.

Note that obtaining perfect predictions is impossible here,

considering the fact that both the measured features and the

throughput are highly noisy variables, measured with commod-

ity hardware. To illustrate this, we examine in more detail
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Figure 7: Summary of prediction performance for various models (a)
and empirical CDF of prediction errors (b). The “mean” model in
plot (b) represents the errors obtained by a baseline predictor that
always predicts the mean throughput of the training set.
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Figure 8: Predicted versus measured throughput, for SINR and a
learned model, on a test set of 200 points.

the features corresponding to the worst prediction obtained by

both models (shown by an arrow on the plots – incidentally,

this is the same point for both models). This point corresponds

to a link l subject to no (controlled) interference (i.e., K = 0),

with an apparently good channel quality (the measured RSSI

is -59 dBm), and using a bandwidth of 40 MHz, supposedly

yielding the largest capacity. Yet, despite these features, the

measured throughput was low. We can only speculate about

the causes for this discrepancy; It may have been an especially

unfavorable conjunction of high noise, both in the measure-

ments of channel quality (which might have been worse than

measured) and/or obtained throughput (which might have been

temporarily altered by software factors). In any case, this

example, although relatively extreme, illustrates the limits of

throughput predictability with imperfect information.

C. Generalization

Due to the split between training set and test set, the

previous results address cases where throughputs predictions

are produced for unseen combinations of features. We now

attempt to push our models further, by making them predict

throughputs for unknown links, potentially belonging to differ-

ent environments.

1) Predictions for Unknown Links: For each possible link

l, we remove both l and its reverse link (obtained by inverting

the transmitter and the receiver of l) from the training set. We

then produce throughput predictions for each data point that

contains l (or its reverse link), and show the results in Figure 9.

Compared with Figure 7(a), some models (especially the
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ones based on regression trees) see their accuracy slightly

decreased. However, the models learned with SVR still per-

form remarkably well; in terms of R2-score, their accuracy is

reduced by less than 4%, and they still improve the accuracy

by 49% compared to SINR-based models.

2) Different Environments: We now manually divide the

links present in our trace in three distinct categories, depending

on the type of attenuation that they experience. The categories

are shown in Figure 6, and they correspond to the following

link division: (i) links that traverse mostly empty space, (ii)

links that traverse sparsely spaced walls and (iii) links that

traverse densely spaced walls.

For each category, we remove all the links (and their

reverse) belonging to this category from the training set. We

then build the test set so as to predict throughput for links

belonging only to this category. The goal of this experiment is

to test prediction accuracy in the worst possible conditions:

each model is learned on links that operate in conditions

radically different than the conditions prevailing during the

actual predictions. In addition to the three link categories (i)-

(iii), we also split our testbed in two halves (also shown in

Figure 6). Here too, we test the prediction accuracy when

learning the models on the first half A of the testbed, and

testing them on the second half B. The resulting accuracies

are shown in Figure 10.

Even in these difficult cases, the learned models based on

SVR show a graceful degradation and keep a relatively high

accuracy (with R2-scores always larger than 0.54). When pro-

ducing predictions for the half B with models learned on the

half A, models based on SVR even obtain similar accuracies

as when learning using the full testbed. This allows us to

draw some conclusions on the extent to which our method

generalizes. Even when learning models on a different part of

the testbed, or using radically different links, abstract models

based on machine learning still have far more predictive power

than measurement-seeded models based on SINR.

D. How Much Learning is Needed?

Finally, we measure the accuracy as a function of the

training set size N . For different values of N , we learn models

using N experiments sampled at random from our complete ex-

periment trace. We then predict the throughput for all the other

experiments, and measure the R2-score. The results are shown

in Figure 11. Using N = 100 training experiments is enough

to obtain better accuracy than SINR models, and N = 1000
experiments already yield good predictive accuracies. If each

experiment consists in 10 seconds of measurements (which is

the duration that we employed), this means that an efficient

performance model for an entire building-scale network such

as ours can be learned in less than 6 hours.

V. SPECTRUM ALLOCATION

We now present our algorithm for the joint allocation of

spectrum and transmit power, which uses a learned model in

order to predict performance in various configurations.

A. Model and Objective

Consider a set of L links, and a set A of access points (APs).

Each link l is composed of one transmitter and one receiver,

which operate on the same frequency band (i.e., using the same

channel center frequency and width). In this paper we focus on

the downlink, in line with asymmetric domestic Internet con-

nections, where downlink traffic is largely dominating [29]. As

such, we will use the terms transmitter and AP interchangeably.

We write l ∈ A if AP A the transmitter of link l. Let F ,W and

P denote the finite sets of available center frequencies, channel

widths and transmit powers, respectively. C := {F×W×P} is

thus the set of possible configurations. For link l, we denote

by fl ∈ F its center frequency, wl ∈ W its channel width,

and pl ∈ P its transmit power. We impose that all the links

sharing a common AP use the same spectrum configuration,

and we define S ⊆ C|A| the corresponding set of feasible

configurations that satisfy this constraint. We write cA ∈ C
for the spectrum configuration of AP A, and more generally

cD ∈ C|D| for the joint configuration of a set D ⊆ A of APs.

Finally, two APs are neighbors if they are close enough to

interfere, and we write NA the set of neighbors of AP A.

Our goal is to optimize jointly – and in a distributed

way – the efficiency and fairness of such a network. To

this end, we maximize the sum of link utility functions (see

Section VI-A for examples of utility functions that achieve

various efficiency/fairness tradeoffs):

max
S

∑

l

Ul(xl), (4)



where Ul : R → R is the (arbitrary8) utility function

attached to link l, and xl is the achievable (application layer)

throughput of link l. The sum is taken over all the L links,

and the complex dependencies on the spectral configurations

are captured through the xl variables.

B. Algorithm Description

The problem of finding exact solutions of Problem (4) is

NP-hard (it is a generalization of the channel assignment

problem, which itself solves a NP-hard graph coloring prob-

lem). Therefore, we use an iterative search method based

on Gibbs sampling, in order to devise a practical algorithm

that still provides asymptotic convergence guarantees. This

tool has been used for different resource allocation problems

(see e.g. [3], [18]). However, to the best of our knowledge,

our algorithm is the first to optimize the channel center-

frequencies, channel widths and transmit power.

Our distributed algorithm is shown in Algorithm 1. Each

AP keeps an independent Poisson clock of rate λ. At each

tick of the clock, the algorithm is run. We now describe this

algorithm from the point of view of AP A. AP A first estimates

its potential throughput, using the black box built in Section III,

for each configuration cA ∈ C, using some information about

its neighbors. This information consists of the neighboring

configurations cNA
, the physical rates currently used by the

neighbors, their traffic loads, as well as the channel gains. Such

information needs to be exchanged on demand (but only once

per algorithm iteration) among neighboring APs.

AP A then calculates UA(cA), the sum of utilities of all

links served by A, based on the estimated throughputs. It then

sends a query request (line 11) to all its neighbors for their

own estimated utilities for each configuration cA (used by A).

Let us now consider how this query is treated when AP A itself

receives such a query, as shown starting in line 17. When AP

A receives a query message from a neighbor B, it estimates

the throughput that would be obtained by each of its links,

for each possible configuration cB ∈ C of B. AP A then

computes UA(cB) as the sum of utilities of all links l ∈ A
for each cB ∈ C, and sends these values to B.

When AP A receives replies from its neighbors, these values

are stored in a matrix U
nb
A , where U

nb
A (B, cA) denotes the

estimated utility of neighbor B when A uses configuration

cA. AP A then uses these values to compute U nb
A (cA), the

sum of neighbors’ utilities when A uses configuration cA,

and ŨA(cA), the total estimate of the neighborhood utility,

including A. This value is then used in line 16 to draw a

random configuration according to the Gibbs distribution. Such

a random sampling procedure converges to states that are

arbitrarily close to the global optimum of Problem (4), as

explained in the next section.

1) Configuration Sampling: We only give a brief justifica-

tion of the asymptotic optimality of our scheme. A rigorous

proof of optimality and convergence would follow an analysis

similar to Borst et al. [3]. Denote Cn ∈ S the global state

8In particular, the utility functions are not required to be concave.

Algorithm 1: Resource allocation at AP A

1 Initialization:
2 Set the temperature T > 0
3 Start with a random generalized configuration cA
4 Start a Poisson clock with rate λ

5 Upon a tick of the Poisson clock:
6 for each cA ∈ C do
7 for each link l ∈ A do
8 estimate potential throughput x̂l(cA ∪ cNA

)

9 compute UA(cA) =
∑

l∈A
Ul (x̂l(cA ∪ cNA

))

10 for each neighbor B ∈ NA do
11 send a query_u message to B

12 Upon reception of a reply_u message from B, fill matrix

U
nb
A , where U

nb
A (B, cA) is the estimate utility of neighbor B

when A uses configuration cA
13 for each cA ∈ C do

14 compute U nb
A (cA) =

∑
B∈NA

U
nb
A (B, cA)

15 compute ŨA(cA) = UA(cA) + U nb
A (cA)

16 draw a new configuration cA at random, with probability

p(cA) =
exp

(
ŨA(cA)/T

)

∑
c′
A
∈C exp

(
ŨA(c′

A
)/T

)

17 Upon reception of a query_u message from a neighbor B:
18 for each cB ∈ C do
19 for each link l ∈ A do
20 estimate potential throughput x̂l(cA ∪ cB ∪ cNA\B)

21 compute UA(cB) =
∑

l∈A
Ul

(
x̂l(cA ∪ cB ∪ cNA\B)

)

22 send a reply_u message that contains the set

{UA(cB) ∀ cB} to B

of the network at the n-th iteration of the algorithm. Each

AP independently selects a (potentially new) configuration

at instants of a Poisson clock, based only on the current

configuration. Cn is thus a Markov chain, whose transitions

probabilities are specified by the Gibbs distribution in line 16,

which depends only on the sum of utilities in a given neighbor-

hood. Using a reversibility argument, it can be shown (see [4])

that these transition probabilities are such that Cn converges

in distribution, at geometric speed, to the stationary distri-

bution with measure π given by π(C) ∝ exp
(∑

l
Ul(xl)

T

)
,

where C ∈ S denotes a global state of configurations. This

distribution is parametrized by T . For sufficiently low T , it

assigns arbitrarily large probabilities to the states that are

global optima of Problem (4).

VI. ALGORITHM EVALUATION

A. Experimental Settings

Implementation. We implemented our algorithm in C++

using Click [19] in user space. We also implemented a

distributed neighbor discovery mechanism, which consists in

a simple rendez-vous protocol. The APs periodically switch

to a pre-determined 20 MHz channel (to have the largest

possible communication range), and send a broadcast frame

(using the largest possible transmit power) that contains their



public (wired) IP address. The neighboring APs that overhear

this address then use their wired connection for the actual

collaboration. In particular, the APs communicate the various

channel qualities that they measure from the neighboring APs,

as well as from their own and neighboring clients. They

also inform their neighbors about their own traffic loads

(which they can easily measure themselves). The performance

predictions at lines 8 and 20 of Algorithm 1 are obtained

with a black box model learned with SVR. Note that the

algorithm deals with random configurations, channel gains

and AP-clients combinations that have in general never been

observed during the learning procedure.

Experimental Methodology. Unless otherwise stated, we

use the following methodology and experimental settings to

evaluate our algorithm. We randomly select between 8 and

10 AP-client pairs among the 22 nodes of our testbed. Each

pair starts in a random configuration of channel, width and

transmit power. We conduct our throughput measurements

with saturated UDP traffic generated by iperf, with 1500 B

packet size. After 600 seconds, we start our algorithm at each

AP for 3000 seconds. Unless otherwise stated, the results

shown on the plots are the averages and standard deviations

obtained over 10 such runs. For the algorithm execution we set

temperature T = 0.01 and the average wake-up time λ = 600
seconds (meaning that each AP “reevaluates” its spectral

configuration every 10 minutes on average). In addition, we

use the following three utility functions Ul(xl) in our study:

• Ul(xl) = xl. When all links use this utility function, the

optimization problem (4) consists in maximizing the sum

of throughputs, irrespective of other considerations such

as fairness. We denote this utility function U thr.

• Ul(xl) = log(1 + xl). Using this function is equivalent

to maximizing proportional fairness; it provides a trade-

off between efficiency and fairness by allocating more

resources to links with larger potential throughput. We

denote this utility function Uprop.

• Ul(xl;α) = (1−α)−1x1−α
l . This is the α-fairness utility

function defined in [23], and parameterized by α ∈ R.

The special case α = 1 is separately defined as being

equal to Uprop. Taking α → ∞ yields allocations that are

max-min fair, and 1 < α < ∞ represents a compromise

between proportional fairness and max-min fairness. We

denote this utility function Uα.

Finally, we benchmark our algorithm against the one pro-

posed in [18]. This algorithm uses a Gibbs sampler to find

configurations of channel center frequencies that minimize

the overall interference. We augment it to sample bandwidths

and transmit powers as follows, for a fair comparison. We

modulate the power received by a node a from a node b by

(i) the transmit power used by b and (ii) the overlap between

a’s receive spectrum mask and b’s transmit spectrum mask

(see [22]), assuming perfect band-pass filters. We run the

algorithm [18] (with our augmented metric) offline, using the

whole testbed channel gains matrix in input, for 1000 iterations.

The resulting allocations are denoted K+, and are run for 1000

seconds in our testbed. This is repeated 10 times to obtain

confidence intervals.

B. Results

We investigate several aspects of our algorithm. We first

evaluate its overall convergence and performance. Next, we

test the influence of the optimization criteria by studying

the performance, in terms of throughput and fairness, using

various utility functions. Throughout this process, we observe

in particular that our learned model is instrumental for achiev-

ing the performance gains. Finally, we examine in detail the

spectrum allocations found by our algorithm, and we observe

that they directly depend on the traffic loads and on the chosen

utility functions.

Convergence and Performance. Figure 12 shows the

temporal evolution of the average total sum of throughputs,

when all links use U thr, as well as the average sum for K+.

K+’s single criterion to reduce interference does not result

in significant throughput gain over random configurations in

this case. This is because the K+ algorithm favors narrow

channel widths and lower transmit powers in the case of

channel overlap, which may not be beneficial in general. In

contrast, our algorithm converges relatively fast (the mean

wake-up period of 10 minutes means that APs wake-up for

the first time after 1200 seconds on average). The final total

throughputs are about 30% higher than those obtained with

K+ or when random configurations are used9.

Comparison of Utility Functions. We now compare the

performance for various utility functions. We conduct experi-

ments where all the links use U thr, Uprop, or Uα with α = 4.

Figure 13 shows the steady-state throughput and Jain’s fairness

index, obtained by computing (
∑

l xl)
2
/(L ·

∑
l x

2
l ), where xl

is the throughput obtained by link l.
As we have mentioned in Section VI-A, utility functions

determine a trade-off between throughput and fairness. Quite

remarkably, the practical results obtained on the testbed

reflect well the objectives of the various utility functions:

U thr provides the greatest throughput, while both Uprop and

Uα improve fairness. Furthermore, in line with theoretical

expectations, Uα provides slightly better fairness and lower

throughput than Uprop. To the best of our knowledge, this is

the first observation that the framework of utility maximization

can be used with spectrum assignment to achieve various

optimization objectives in a real testbed. Overall, compared to

random configurations and the K+ algorithm, it appears that

all utility functions perform well both in terms of throughput

and fairness.

Gains of the Learned Model over SINR-based Model.

The key element that allows our algorithm to jointly optimize

the network over all three parameters is our learned black box

model. In Section IV, we compared its accuracy with that of

measurement-seeded SINR models given by Equation (3). We

now examine how this improved accuracy translates to the

9We observed similar convergence for TCP traffic with about 20% through-
put gain.
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Efficient load balancing is achieved, as heavily loaded APs sample
wider bandwidths and larger transmit powers.

enhanced performance of our algorithm. To this end, we also

plot the throughput and fairness for U thr obtained with the

measurement-seeded SINR model in Figure 13 (labeled SINR).

In this case, both the throughput and fairness significantly

decrease (and become more variable), compared to the case

where the algorithm uses the learned model.

Selected Configurations. We now investigate how the

algorithm selects its spectral and power configurations, in

different traffic load and utility functions scenarios. Figure 14

shows the distribution of the transmit powers selected by the

algorithm (over all nodes and all experiments), for the three

utility functions. It appears that fairer policies tend to use low

transmit power for a higher fraction of time (see Uα vs U thr).

In turn, this means that the aggressiveness of the configurations

(here in spatial domain), can be directly controlled by the

utility functions.

We now study the impact of traffic loads, as it is taken into

account by our models. To this end, we perform experiments

where each link has a traffic load randomly chosen between 10
and 80 Mb/s. In these experiments, we use the utility functions

Ul(xl) = min{xl/loadl, 1}, where loadl is the load of link

l. This function is equivalent to U thr when all links have a

load of 100 Mb/s (which corresponds to a saturated situation

in our case), and it is maximized as long as all links obtain

a throughput that satisfy their demand10. Figure 15 shows the

proportion of time (over all nodes and all experiments) that the

algorithm selects a 40 MHz channel width (on the left y-axis),

and the average transmit power in dBm (right y-axis), as a

function of traffic load at the AP that makes these choices.

10Note that in this experiment, the links use different utility functions that
depend on their (random) traffic demand.

We observe an elegant load-balancing pattern, as APs with

heavier loads use more spectrum and larger transmit powers.

This is a desirable feature (see e.g., [11]), and it directly relies

on the ability of our learned models to suitably capture the

effect of variable traffic loads. Interestingly, note that, when all

APs generate 100 Mb/s of load (labeled “all 100” in Figure 15),

the APs lower their resource consumption compared to cases

with heterogeneous loads. This is because, in these cases,

heavily-loaded APs compete with other heavily-loaded APs,

and they naturally collaborate to share spectrum equitably. We

thus deduce that the various utilities, fairness objectives and

traffic loads directly impact the spectrum allocation patterns.

In particular, both transmit power and channel widths are

used to load-balance the spectrum usage as a function of the

optimization criteria.

VII. LIMITATIONS AND DISCUSSION

We have evaluated our learned models in static conditions,

a setting for which throughput prediction is somewhat easier

(compared to say, high mobility with fast fading, short channel

coherence times, etc). This is because, in this paper we delib-

erately restrict ourselves to using features easily accessible

on commodity hardware (e.g., RSSI measurements). Such

features are only meaningful on relatively coarse timescales

(typically seconds) and cannot capture such fast-changing

phenomena. In this sense, our black boxes suffer the same

timescale limitations as any model (including SINR) using

similar measurements. We leave for future work the evaluation

of a similar learning framework using features operating at

shorter timescales.

Importantly, using features operating at relatively coarse

timescales already allows our learned models to be useful

in practice. In Section V, we considered a setting where the

global spectrum consumption are re-evaluated every few min-

utes by the APs11. Such global, relatively slow-varying spec-

trum allocation complements well (and provides more spec-

trum to) existing PHY techniques operating at fast timescales,

such as interference cancellation and alignment.

11At faster timescales, the overhead of switching to different spectrum
bands on commodity hardware would exceed the benefits of employing
efficient spectrum allocations.



VIII. RELATED WORK

Performance Models. Several papers propose

measurement-based approaches to model performance

and interference in 802.11 networks. In particular, [17], [20],

[26], [28] propose to conduct initial measurement campaigns

(where the number of measurements is typically a function

of the number of nodes present in the network), in order to

fit various performance models. [28] fits a model based on

the SINR in order to estimate the packet loss probability,

whereas [17], [26] and [20] use measurements-based Markov

chain models to predict the capacity and/or interference of

802.11 networks. All of the above models are agnostic to the

spectral configurations of the nodes, and they are designed

to work when the links operate with a fixed channel width.

In this paper, we also use an initial measurement phase.

However, the crucial difference with our approach is that we

are not constrained to any particular model, but rather employ

supervised machine learning to learn any suitable model that

captures both PHY and MAC layer complexities together.

[12] observes that measurements at the OFDM subcarrier

level largely improves the accuracy of performance prediction.

Unfortunately, the method does not take interference into ac-

count, and it cannot be used to make performance predictions

when several links operate at the same time.

Finally, a few papers propose to use machine learning

techniques in the context of wireless networks. [8] discusses

the use of k-NN for link adaptation and [7] proposes an ar-

chitecture for cognitive radios with learning abilities. However,

these works do not attempt to predict performance. To the best

of our knowledge, ours is the first work using machine learning

to predict actual Wi-Fi performance.

Resource Allocation. Some recent works consider simul-

taneous channel center frequency and width allocation for

802.11 networks. [27] runs the spectrum allocation jointly with

scheduling decisions at a central controller, and [15] proposes

a distributed algorithm for the joint allocation of center fre-

quencies and bandwidths. None of these algorithms considers

the transmit power, and they do not adapt to various utility

functions. Our learned models predict achievable throughputs,

which can be directly plugged into the utility maximization

framework. This removes the need to use indirect optimization

objectives (such as minimization of interference, which often

does not coincide with performance maximization [15]).

The theoretical works that are the closest to ours

are [3], [25], [14]. These papers propose optimal algorithms for

channel and/or power selection, but do not consider channel

width. They are also based on Gibbs sampling or equivalent

MCMC methods, but they have not been implemented in real

networks. To the best of our knowledge, our work is the first to

show that utility maximization can be performed in a spectrum

assignment context, using a real testbed.

IX. CONCLUSIONS

We investigated and validated a new approach for predicting

the performance of Wi-Fi networks. Rather than manually

fitting complex models to capture complex dependencies,

we showed that it is possible to directly learn the models

themselves, from a limited set of observed measurements. This

approach bypasses the usual modeling process, which requires

both deep knowledge and tedious analysis, and yet often yields

models that are either too restricted or too inaccurate. We

observed that abstract black box models built using supervised

machine learning techniques – without any deep knowledge of

the complex interference dynamics of 802.11 networks – can

largely outperform the dominant class of SINR-based models.

Further, we have shown that these models still work when

they have to predict performance for links that have never

been observed during the learning phase.

We have used one such model as an oracle in a new

distributed utility-optimal resource allocation algorithm. We

observed that our algorithm adapts well to various optimiza-

tion criteria, and that our learned model is instrumental for

achieving good performance.
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