
Scalable Routing Easy as PIE: a Practical Isometric
Embedding Protocol

Julien Herzen
EPFL, Lausanne, Switzerland

julien.herzen@epfl.ch

Cedric Westphal
Docomo Innovations, Palo Alto, CA

cwestphal@docomoinnovations.com

Patrick Thiran
EPFL, Lausanne, Switzerland

patrick.thiran@epfl.ch

Abstract—We present PIE, a scalable routing scheme that
achieves 100% packet delivery and low path stretch. It is easy
to implement in a distributed fashion and works well when
costs are associated to links. Scalability is achieved by using
virtual coordinates in a space of concise dimensionality, which
enables greedy routing based only on local knowledge. PIE is
a general routing scheme, meaning that it works on any graph.
We focus however on the Internet, where routing scalability is an
urgent concern. We show analytically and by using simulation
that the scheme scales extremely well on Internet-like graphs.
In addition, its geometric nature allows it to react efficiently
to topological changes or failures by finding new paths in the
network at no cost, yielding better delivery ratios than standard
algorithms. The proposed routing scheme needs an amount of
memory polylogarithmic in the size of the network and requires
only local communication between the nodes. Although each node
constructs its coordinates and routes packets locally, the path
stretch remains extremely low, even lower than for centralized
or less scalable state-of-the-art algorithms: PIE always finds short
paths and often enough finds the shortest paths.

I. INTRODUCTION

In the Internet, the tremendous growth of the number of

destinations translates into a corresponding growth of the

routing tables. The Internet Architecture Board recently recog-

nized the scalability of routing as being “the most important
problem facing the Internet today” [1]. The core routers need

an excessive amount of resource and power to store, maintain

and perform lookups in huge routing tables. The amount of

traffic exchanged between the routers is proportional to the size

of these tables, and the complexity of managing some state

for every destination in the network results in convergence

problems and instabilities. The arrival of IPv6, along with

new trends such as ubiquitous and mobile computing, is likely

to make the number of potential destinations explode, thus

exacerbating this fundamental scalability issue. In addition,

there are some other contexts where the scalability of routing

can be an important concern, such as large sensor networks in

which the nodes have only a very limited amount of memory.

There is a fundamental relationship between the size of the

state required by a routing algorithm and the quality of the

routes that it can find. It is well-known that to accomplish

shortest path routing on any network of n nodes, the routing

table of each node needs to grow as O(n). Indeed, if we

denote by path stretch the ratio of the path length achieved

by a routing protocol, divided by the shortest possible path

on the graph, then it is known that any protocol that would

keep the path stretch in the worst case strictly below three,

would require a O(n) bit state at each node as well [2]. As

a direct consequence, if we want to significantly reduce the

state required by routing algorithms in the future, we should

consider algorithms that may inflate the path lengths.

One potential avenue is to design practical protocols that

create, for all the nodes of the network topology, some virtual

coordinates in a metric space such that the relative position

of the nodes can be expressed as a function of their distance.

Greedy forwarding consists in forwarding a packet to a node’s

neighbor closest to the destination. As this forwarding depends

only on the distances between the neighbors of a node and

the destination, it is a purely local mechanism. Further, the

routing table consists only of the coordinates of a node’s

neighbors: This information scales as the maximum degree of

the graph times the size of the coordinates. These are typically

of the order of O(log(n)), making these so called geographic
(or geometric) routing schemes very scalable (log(n) bits are

already required to merely name each node in the network). In

addition, as the routing decision is a simple comparison of the

relative distance between a set of neighbors and a destination,

the forwarding decisions are fast and easy to implement.

In his famous 1967 small-world experiment [3], Milgram

observes that human beings have the ability to efficiently

route messages among themselves without having a full view

of the topology; by just forwarding the messages to their

acquaintances that they think are the closest to the final
destination. To some extent, the Internet and a large category

of random graphs exhibit similar small-world properties [4]. It

is therefore natural to ask whether a more formal and explicit

notion of distance can be obtained in the context of computer

networks, that fits well the structure of such graphs.

Let G = (V,E) denote the graph defined by the topology

of the communication network. V represents the set of nodes

(routers) and E denotes the set of bi-directional links connect-

ing these nodes. Also, consider an embedding space (X, d),
that is the metric space X equipped with the distance d.

For each node v ∈ V , define its set of neighbors Nv ,

namely: Nv = {w ∈ V, (v, w) ∈ E}. We recall the definition

of a greedy embedding [5]:

Definition 1.1: A greedy embedding is a mapping f : V →
X such that ∀u,w ∈ V, u �= w:

∃v ∈ Nu such that d(f(v), f(w)) < d(f(u), f(w)). (1)

2011 19th IEEE International Conference on Network Protocols

978-1-4577-1394-1/11/$26.00 ©2011 IEEE 49

Applied to routing, this simply states that, if the node u is

trying to send or relay a packet to the destination w, it will

always find a neighbor v such that v is closer to w than u
is, and thus that delivering the packet to v brings it closer to,

and eventually at, its destination. Most geographical coordinate

systems, including some virtual coordinate embeddings, do

not produce greedy embeddings and require mechanisms to

recover from local minima.

There is much theoretical work (some of which we describe

in Section II) that considers whether a topology can be greedily

embedded in a space (X, d), and under which conditions.

Most of this work focuses on providing guarantees, and

does not lend itself to implementation, as a full view of the

topology is essential to most results. As a consequence, to

our knowledge there exists no routing scheme that is practical,

scalable (i.e., requiring an amount of memory polylogarithmic

in n), achieves close to optimal path stretch and guarantees the

success of routing. Our intent is to present such a scheme.

Outline: In the next section, we summarize the related

work. In Section III, we present PIE and the embedding

protocol. In Section IV, we provide an analysis of PIE. In

Section V, we present an evaluation of the performances of

PIE. We discuss practical relevance for Internet routing in

Section VI and we finally conclude in Section VII.

II. RELATED WORK

The idea of using coordinates for routing has been intro-

duced in the context of wireless ad-hoc networks. In particular,

the idea of using virtual coordinates (instead of the actual

physical positions of the nodes) has been proposed as a mean

to perform greedy routing without the need for a GPS receiver.

[6], [7] and many others build practical schemes to create

synthetic coordinates from the underlying topology. These

are distributed methods, and can be implemented. However,

they do not apply to all graph topologies (typically only on

planar graphs) and cannot guarantee the success of greedy

forwarding; the packets can be trapped in local minima.

Solutions such as face routing have been proposed to guar-

antee the success of geographic routing when local minima

are present, see for instance [8]. These methods apply greedy

routing by default and use a recovery mechanism when the

packet is trapped in a local minimum. These deterministic

recovery mechanisms only guarantee success of routing when

the dimensionality of the underlying space is no more than

two [9]. In addition, backtracking out of local minima signifi-

cantly inflates paths lengths and induce high congestion [10].

In order to obtain greedy embeddings, it is therefore ap-

pealing to consider spaces of more than two dimensions. The

fundamental tradeoff is to find a space of concise dimen-

sionality (to guarantee scalability) that suits the embedding

of a graph in a way that preserves the distances among the

vertices (for routing performances). There is an ample body

of theoretical work on graph embedding onto low-dimensional

spaces (see [11] and references therein). Maymounkov [12]

shows that log(n) is the minimal dimension for a Euclidean

space to construct a greedy embedding of an arbitrary graph.

The author also demonstrates that it is enough for trees, but

his theoretical result, unfortunately, cannot be translated into

a practical algorithm.

For some categories of graphs, it is possible to perform

the embedding in a two dimensional Euclidean space. Indeed,

Papadimitriou et al. [5] famously conjectured that such a space

could embed any planar triangulation, and [13] confirms the

conjecture. However, O(n) bits are required to differentiate

the points in the coordinate space.

Kleinberg [14] and Cvetkovski et al. [15] consider hyper-

bolic spaces of 2 dimensions and [14] demonstrates how to

greedily embed any tree. However, here again the schemes

results in coordinates of size O(n) bits, and do not produce

a significant gain in scalability. Very recently, Papadopoulos

et al. [16] observed that uniform repartition of nodes onto

a hyperbolic plane produces scale-free (Internet-like) graphs,

and that the corresponding coordinates in the hyperbolic plane

have desirable properties for greedy routing in these graphs.

The reverse procedure has been used in [17] to find the

hyperbolic coordinates of the Internet ASs that fit the actual

AS topology as well as possible. Although this work gives

precious insights to understand the relations between scale-

free graphs and the hyperbolic space, it yields an embedding

that is not greedy and it does not provide 100% packet

delivery: routing may fail. PIE pursues similar goals but takes

a different approach, it does not try to fit the coordinates

to a predetermined space, but lets the embedding space be

determined by the topology, using only local communications

between the nodes.

[18] constructs a fully distributed practical embedding by

projecting an n-dimensional graph topology onto a O(log(n))
dimension Euclidean space using the Johnson-Lindenstrauss

lemma. Despite attempting to preserve the relative distance

between points, this method is quasi-greedy and introduces

some distortion in the embedded topology, which creates

local minima. It therefore requires a recovery mechanism that

significantly increases the path stretch.

Gupta et al. [19] and Flury et al. [20] find a bounded stretch

of 3 with O(log2(n)) coordinates for planar graphs [19] and

combinatorial unit disk graphs [20]. For arbitrary graphs, the

scheme of [20] also provides a stretch of O(log(n)). However,

these algorithms require a full, centralized knowledge of the

topology in input.

The idea of trading off path stretch for routing table size is

the core component of the work on compact routing (see for

instance [21]). In [22], Thorup et al. show that it is possible

to guarantee a path stretch no larger than three with routing

tables of size O(
√
n log(n)). Such compact routing schemes

have been successfully implemented in practice [23], [24]. We

explore a different point in the tradeoff space, specifically,

we relax the worst-case path stretch guarantee in order to

provide polylogarithmic scalability, which is obviously needed

to sustain any exponential growth of the Internet. We show in

our evaluations that the relaxation of this guarantee does not

disadvantage PIE in any way: it achieves significantly lower

stretch than compact routing, and never higher than three.

50

[25] adapts the scheme of Thorup et al. for power-law

graphs and obtains better scalability for the routing state,

although still a fractional power of n.

[26] proposes a specialized scheme for power-law graphs,

which provides polylogarithmic scalability, as PIE does. How-

ever, their method here again requires the complete topology

graph in input and does not translate to a distributed protocol

to build the routing tables. In addition, it relies on tree routing,

that is, it uses only links that are spanned by some pre-

constructed trees and neglect the others. PIE also constructs

trees, but its geometric nature allows it to use all the links of

the graph. We show in Section V that PIE finds shorter routes.

Distributed Hash Tables (DHTs) have been used to improve

the scalability of routing as well (for instance, VRR [27]).

However, such DHTs map to source routes that require O(
√
n)

bits to be stored on many topologies, and O(n) in the worst

case. [28] and references therein use Delaunay triangulations

to enable greedy forwarding with bounded stretch. However,

unlike our work, they assume that the nodes exist in a

Euclidean space. We assume nodes in an arbitrary connectivity

graph. In particular, it has been shown that Euclidean spaces

are not well suited to represent Internet nodes [29].

[26] [22], [23], [24] [17] [18] PIE
polylogarithmic scalability � × � � �
100% success rate � � × � �
no recovery mechanism � � � × �
distributed protocol × � � � �

TABLE I
COMPARISON OF PIE WITH RELATED STATE-OF-THE-ART.

III. DESCRIPTION OF PIE

A. Model and Background

We consider a weighted graph G = (V,E) associated with

a function w : E → R
∗
+ assigning a cost to each edge of G. w

defines the usual (weighted) shortest path distance in G, that

we denote by dG. If f : V → X is an embedding of G into a

metric space (X, d), f is said to have distortion D if:

∃ r > 0 such that ∀ u, v ∈ V,

r· dG(u, v) ≤ d(f(u), f(v)) ≤ D· r· dG(u, v)
An embedding with distortion 1 is said to be isometric.

We are interested in situations where the host metric

space is a standard k-dimensional metric space (X, d), where

X ∈ R
k, equipped with a lp-norm such that d(x, y) =

‖x− y‖p for all x, y ∈ X and

‖x‖p =

{
p

√∑k
i=1|xi|p if 1 ≤ p <∞,

maxi|xi| if p =∞,

for all x ∈ X . We denote by lkp such a space, and thus lk2
denotes the usual k-dimensional Euclidean space.

As there is exactly one path between any two nodes in a

tree, an isometric embedding of a tree is also greedy. Further,

it is known (see Linial et al. [30], Theorem 5.3) that a tree can

be isometrically embedded in l
O(logn)
∞ . Given these two pieces

of information, we could imagine a routing scheme that first

extracts a tree T spanning the connection graph G, embeds

it isometrically in l
O(logn)
∞ and uses the resulting greedy

embedding of G to perform greedy routing. However, this

approach would not work in practice, for two main reasons:

First, the isometric tree embedding algorithm proposed in

[30] requires a full, centralized knowledge of the tree, as it

recursively divides it in balanced subtrees. Second, routing

over a tree is clearly inefficient because a significant number

of links may not be taken into account, possibly leading to

poor performance in terms of path stretch and congestion.

In the following, we address these two problems. By re-

laxing the deterministic guarantee on the dimensionality, we

are able to devise a different, simple, isometric embedding

algorithm that does not need global knowledge of the topology

and is easy to implement in a distributed scenario. As shown

in Section IV, the guarantee on the dimensionality becomes

O(log2 n) with probability one (almost surely), on the relevant

categories of random graphs.

The second problem due to tree routing is addressed by

constructing multiple trees with different locality levels. In

such a scenario, not all the trees would span the whole graph,

but most would span only a local portion of it, according to

their locality level. However, the union of all the trees at each

locality level would cover the whole graph. As such, each node

is covered by one tree for each locality level, that is, by log(n)
trees in total if we choose log(n) locality levels.

Here are the high level steps of PIE:

• Extract several (rooted) trees with different locality levels

from the graph, with at least one spanning the whole

graph.

• Embed each of these trees in a separate coordinate

system.

• When forwarding a packet, choose a tree on which

to perform greedy routing and send the packet to the

neighbor that provides the best progress towards the

destination in this coordinate system.

In the next section, we present the distributed greedy

embedding algorithm in detail, using one spanning tree. The

extension to several trees is explained in Section III-C.

B. Isometric Tree Embedding

Let T denote a rooted spanning tree of G. We explain

here how to embed T , and we provide later two distributed

algorithms that (i) extract T out of G and (ii) embed T .

Let O be a node of the tree T . At the beginning of the

algorithm, O is set to be the root of the tree, and the coordinate

{0} is assigned to it. Let us denote by S the set of children

of O that consists of the nodes S = {v0, v1, . . . , vs−1}, where

s = |S| is the cardinality of S.

For each child vi ∈ S, compute a binary representation

of its index i. We denote by bi = 〈b0i , b1i , . . . , bh−1
i 〉 such a

representation, where h ≤
log2(s)�.
Let Ai be the set formed by vi along with all its de-

scendants in T . The algorithm appends h new coordinates

51

〈c0i , c1i , . . . , ch−1
i 〉 to all the vertices u in Ai as follows:

cji =

{
−dT (u,O) if bji = 0,

dT (u,O) if bji = 1,
(2)

0 ≤ j ≤ h − 1. After that, each node in S plays the role of

O, and the algorithm repeats the same procedure. This way

of assigning the coordinates goes from the root to the leaves

in one pass and can be implemented in a way that induces

only local communication between a node and its neighbors.

In particular, at each step, the node O is higher in the tree

than the nodes that receive the new coordinates, and Eq. (2)

does not need to be evaluated for all the vertices in Ai at

the same time. Each node can simply infer them based on

the coordinates of its parent in the tree. Therefore, each node

O needs only to transmit its own coordinates along with the

binary map bi to each of its children vi.
The binary map bi can be any variable length binary repre-

sentation of i obtained with a prefix-free code. In particular,

such a map of length h ≤
log2(s)� can be obtained using a

Huffman code to represent the s children of O when they are

equiprobable.

The scheme can be slightly improved if we note that if a

node O is not the root and s = 1 (i.e., it has only one child),

assigning a new coordinate to all the descendants of O would

have no effect on their relative distance under the l∞-norm.

In this case, the binary map does not need to be sent. A step-

by-step example of the embedding is shown in Figure 1.

The greedy forwarding procedure is straightforward: When

forwarding a packet, a node considers all its neighbors that are

closer to the destination and chooses the one that minimizes

the overall path length (i.e., taking into account the cost of the

link to go to this neighbor). Specifically, a node v forwarding

a packet to a destination t chooses the node that satisfies:

argmin
u∈Nv s.t. ‖(t−u)‖∞<‖(t−v)‖∞

{w(v, u) + ‖(t− u)‖∞} .

Note that this forwarding procedure considers all the neighbors

in G, and not only the neighbors in T . This enables shortcuts

off the tree. Indeed, we prove in Section IV that this embed-

ding of T yields a greedy embedding of G. Therefore, this

forwarding procedure always returns a next-hop closer to the

destination (except if v is already the destination).

Algorithm Specification: The overall algorithm pro-

ceeds in two steps. First, a spanning tree is extracted from

the graph and then the virtual coordinates are computed

based on this tree. We specify these two steps in the form

of two distinct modules, the tree_maintainer and the

coordinates_maintainer. The tree_maintainer
implements a distributed spanning tree construction by using

the well-known STP protocol [31]. Recall that in this protocol,

each node chooses an ID and the node with the largest

ID eventually becomes the root of the whole spanning tree.

During our experiments on power-law graphs, we observed

slightly better routing performances when the root was the

highest degree node. We thus choose the ID to be the degree

of the node (plus a small random salt to break ties if needed).

(a)

(b)

(c)

Fig. 1. Example of isometric embedding from the root to the leaves. (a)
shows the tree to embed. The vertices are named a to h. The root is the
node a. We assume that all the edges have a weight of 1, except the edge
(e, g) that has a weight of 4. (b) After having picked the coordinate {0},
the root sends the binary map (here represented by + and -) corresponding
to each of its children. In (c), the nodes b and e play the role of O and
send their coordinates to each of their children, along with the corresponding
binary maps. Note that the node e has 3 children, resulting in a map of 2
bits for two of them and one bit for the last one. The algorithm does not
require all the nodes to have the same number of coordinates, the l∞-norm
is simply applied on the first common coordinates. For example, if one wants
to compute the distance between the node d and the node g, the coordinates
to use are {-2:1} and {5:-4}. As |−2 − 5| > |1 + 4|, the distance is
|−2− 5| = 7.

The STP protocol has been augmented with a straight-

forward improvement, in order for each node to learn who

its children are when it receives messages from its neigh-

bors. The coordinates_maintainer acts separately but

uses the tree_maintainer in order to access the list of

children. In realistic scenarios, the topology may of course

change over time and the links may be asynchronous. There-

fore, these two modules typically act on a periodic basis

in order to accommodate possible changes in the tree. The

pseudo-codes corresponding to the distributed versions of the

tree_maintainer and coordinates_maintainer
are shown in Algorithms 1 and 2, respectively. We use the

following conventions for the pseudo-code:

• a.b denotes the field b of the element a.

• A[i] denotes the element at index i of the data structure

A (the indexes start at 0).

• A.length denotes the number of elements in the data

structure A.

52

Algorithm 1 tree_maintainer at node u

Init:
children← ∅
u.rootId← degree of u (+ random salt in [0, 1[to break ties)
u.height← 0
u.parent← ∅
Periodically:
send treeMsg(u.rootId, u.height, u.parent) to each neighbor of
u

Upon reception of treeMsg msg from neighbor v:
wv ← w(u, v) � cost from u to v
if (msg.rootId > u.rootId) or (msg.rootId = u.rootId and
msg.height+ wv < u.height) then

u.parent← v
u.height← msg.height+ wv

u.rootId← msg.rootId
end if
if msg.parent = u and v /∈ children then

children.add(v)
end if
if msg.parent �= u and v ∈ children then

children.remove(v)
end if
procedure GETCHILDREN

return children

end procedure

• treeMsg and coordMsg are the two message

types used by the tree_maintainer and the

coordinates_maintainer, respectively. When

they are constructed, they receive as arguments the

values of the fields that they will carry.

The other notations should be clear from the context.

C. Extension to Several Trees

This embedding is a significant improvement over tree

routing. It can still be improved by using multiple trees.

Building only one tree spanning the graph takes into account

exactly (n − 1) links when computing the coordinates and it

ignores all the other links. This can lead to some sub-optimal

routing decisions when the shortest path between two nodes

contains a link that is not included in the spanning tree.

We now describe how to use several trees so that any given

link has a high probability of being spanned by one of the

trees. An obvious solution would be to construct multiple

spanning trees. However, in order to keep a small overall

number of coordinates, each node has to belong to a small

number of trees. If all these trees span the whole graph and

have randomly chosen roots, it is likely that some of these

roots will be close to each other; this would lead to similar,

redundant trees, with little or no performance gain.

Instead, we propose to partition the graph m times: The first

partition divides the graph in two pieces, the second partition

divides the graph in four pieces and, more generally, the l-
th partition divides the graph in 2l pieces. Each of these m
partitions defines what we denote a locality level. For the

locality level l, each of the corresponding 2l pieces of the

Algorithm 2 coordinates_maintainer at node u

Init:
u.coords[0]← 0

Periodically:
children← tree_maintainer.GETCHILDREN

if change in childhood then
NOTIFYCHILDREN

end if
procedure NOTIFYCHILDREN

s← number of children
if s = 1 then

send coordMsg(u.coords) to children[0]
end if
if s > 1 then

for i = 0 to s− 1 do
bi ← prefix-free binary representation of i
send coordMsg(u.coords, bi) to children[i]

end for
end if

end procedure
Upon reception of coordMsg msg from parent p:
wp ← w(u, p) � cost from u to p
l← msg.coords.length
for k = 0 to l − 1 do

if msg.coords[k] < 0 then
u.coords[k]← msg.coords[k]− wp

else
u.coords[k]← msg.coords[k] + wp

end if
end for
for k = 0 to msg.b.length−1 do

if msg.b[k] = 0 then
u.coords[l + k]← −1 · wp

end if
if msg.b[k] = 1 then

u.coords[l + k]← wp

end if
end for
if u.coords changed then

NOTIFYCHILDREN

end if

graph is spanned by one tree and we denote these 2l trees

the trees of level l. Note that there is only one tree of level 0
and that it spans the whole graph. Of course, computing such

exact partitions for each of the m locality levels would require

a global knowledge of the graph.

In order to keep a distributed solution, we slightly modify

the procedure and adopt the following election process: For

each locality level 0 ≤ l ≤ m − 1, each node elects

itself as the root of a tree of level l with a probability of

2l/n, independently of the other nodes. We have therefore an

expected number of 2l trees of level l, for all 0 ≤ l ≤ m− 1.

Each of the trees is then constructed in a similar way as

described in the previous section; for every locality level l,
each node chooses to belong to the tree of level l whose root

is the closest (breaking ties arbitrarily). Each node maintains

therefore m independent sets of coordinates, corresponding to

the m trees (of levels 0 to (m− 1)) to which it belongs. We

will see in Section V that taking m ∈ O(log(n)) leads to

53

substantial performance gain and makes the performances of

the scheme to scale with the size of the network.

The only necessary condition to route all the packets suc-

cessfully is that all the nodes have at least one of their m sets

of coordinates in common (i.e., that they belong to at least

one common tree). This condition can be trivially satisfied by

ensuring that at least one node deterministically becomes the

root of a tree of level 0. This node can be for instance the one

having the largest ID, as in the single-tree case. Now, when

evaluating the distance between two nodes, one just chooses

the l∞-norm that is minimized over the trees that the two

nodes have in common. We denote by ul the coordinates of

node u in the tree of level l to which it belongs. In addition,

we denote by T l
u,t a tree of level l to which both the node

u and the node t belong. When a node v wants to transmit a

packet to a destination t, it chooses the node that satisfies:

argmin
u∈Nv

min
l : ∃T l

u,t s.t.
‖(tl−ul)‖∞<‖(tl−vl)‖∞

{w(v, u) + ‖(tl − ul)‖∞} .

This forwarding procedure needs to be able to uniquely

identify the trees. This can easily be done using the identifier

of the root, of size log(n). Figure 2 shows an example of our

embedding using several trees.

The intuition now is that a large number of small trees hav-

ing a high locality level provides fine-grained coordinates for

local paths, while larger trees of lower levels provide coarse-

grained coordinates for the longer routes and tie everything

together, much like in a divide-and-conquer strategy.

Algorithm Specification: The distributed

implementation simply consists in a general-

ization of the tree_maintainer and the

coordinates_maintainer to use m independent

trees, as described above.

IV. ANALYSIS

In this section, we derive some simple facts about the

scalability and performance of PIE when applied on Internet-

like graphs. For simplicity, we consider only the embedding of

a single spanning tree T on an unweighted graph (that is, using

the hop count metric). Extensions of the results to multiple

trees and weighted graphs are immediate in most cases.

A. Internet-like graphs

Let us write diam(G) for the diameter of a graph G =
(V,E). For a node u ∈ V , we write dim(u) for the number

of coordinates assigned to u by the single tree embedding

procedure of PIE. Let us also denote by dim(G) the highest

such number, i.e., dim(G) = maxu∈V dim(u).
It has been pointed out by several research groups (see [32],

[33]) that the connectivity graph of the Internet exhibits a

power law node-degree distribution, both at the router and

at the AS levels. In these graphs, the proportion of nodes

having degree k is proportional to k−λ for some constant

λ > 1. For the Internet, λ has consistently been estimated

in the range 2 < λ < 2.3 [4]. Such a degree distribution (in

particular when 2 < λ < 3) leads to very particular structural

(a)

(b)

Fig. 2. Example of an embedding using several trees. We assume for clarity
that all the edges have a cost equal to one. (a) shows a tree of level 0 that spans
the whole graph (with solid edges) and a corresponding set of coordinates at
each node. (b) shows two trees of level 1, each with solid edges, along with
the corresponding coordinates, which we denote by ”red” and ”green”. We
are interested in the case where a source s wants to send a message to a
destination d. s will compare the coordinates in the trees that its neighbors
have in common with d. Here, the neighbors of s are u and v and they both
have the level 0 and the ”green” level 1 sets of coordinates in common with
d. s will find that u is at distance 4 of d using the level 0 coordinates, and
at distance 3 using the ”green” coordinates. Similarly, v is at distance 5 with
the level 0 coordinates and 1 with the ”green” ones. Therefore, s will forward
the packet to v, which is the optimal choice here. Note that if only the tree
of level 0 was present, s would have forwarded the packet to u. The ”green”
tree provides a valuable shortcut in this situation.

properties, among which the fact that the graphs typically

exhibit extremely small distances between the vertices (with

diam(G) ∼ log n [34]), hence the small-world denomination.

In the following, we denote by G(n, λ) the realization of an

n-nodes random graph such that the expected degree sequence

(k1, k2, ..., kn) follows a power law with exponent λ and an

edge between two nodes ui and uj is created independently

with probability proportional to kikj [34]. Some authors use

the term scale-free for such graphs. As this term is not defined

unambiguously and may imply some other properties that we

do not need here [35], we only use the term power law graph.

B. Success Ratio

Theorem 4.1: For any connected graph G, the embedding

of G produced by PIE ensures the success of routing.

Proof: We need to show that PIE produces a greedy embed-

ding. As T is a subgraph of G that contains all the vertices of

G, it is clear that a greedy embedding of T is also a greedy

embedding of G. In addition, an isometric embedding of T is a

greedy embedding of T . It suffices therefore to show that PIE

produces an isometric embedding of T . For any node u ∈ T ,

54

write 〈u0, u1, . . . , udim(u)−1〉 its coordinates. For any two

nodes u, v ∈ T , write Ou,v their least common ancestor in T .

Every node above Ou,v in T assigns the same coordinates to u
and v. Ou,v assigns coordinates with magnitude |dT (Ou,v, u)|
to u and |dT (Ou,v, v)| to v in Eq. (2), with at least two of these

coordinates, say uh and vh, having opposite signs. Therefore,

∃h s.t. |uh − vh| = dT (Ou,v, u) + dT (Ou,v, v) = dT (u, v),
because Ou,v is the least common ancestor of u and v.

Moreover, as every node below Ou,v in T assigns coordinates

with a magnitude strictly smaller than |dT (Ou,v, u)| to u and

|dT (Ou,v, v)| to v, ‖u− v‖∞ = |uh − vh| = dT (u, v).

C. Scalability

We give a probabilistic upper bound on the number of

coordinates that are required to describe the position of the

nodes in large graphs.

Theorem 4.2: Let G(n, λ) be an n-nodes realization of a

power law graph with 2 < λ < 3. We have:

dim(G(n, λ)) ∈ O(log2(n)) (3)

almost surely.

Proof: Let r denote the root of T . For any node u, let P
be the set of all the nodes above u in the unique path from

r to u in T . For each node v ∈ P , the embedding algorithm

assigns
log2(δv)� new coordinates to u, where δv denotes the

degree of the node v (see Eq. (2)). Obviously, we have that

∀v ∈ G, δv ≤ Δ, where Δ is the maximum node degree in

G. In addition, as T is the union of the shortest paths from r
to all the other nodes in G, we have |P | = dG(r, u). We can

therefore write the upper bound dim(u) ≤
log2(Δ)�dG(u, r).
We have:

• Δ < n,

• dG(u, r) ≤ diam(G) ∈ O(log n) a.s. ([34] Theorem 4).

Relation (3) follows.

This means that, with probability one, PIE embeds T (and

thus G) in l
O(log2(n))
∞ . If we consider the multi-tree case, each

node belongs to O(log n) trees and thus PIE almost surely

embeds G in l
O(log3(n))
∞ . Note that this bound holds for any

graph with diameter O(log n). In particular, it holds for more

classic random graphs (see for example [36]).

D. Performance

As a node “knows” all of its neighbors, the algorithm finds

all the 1-hop routes with stretch 1. Therefore, a route between

a source u and a destination v may exhibit a stretch larger

than 1 only if dG(u, v) ≥ 2.

As the embedding is greedy, the longest possible route that

the routing procedure can find has length diam(T) = diam(G).
Therefore, the worst possible stretch is diam(G)/2. Using

Theorem 4 in [34], we have just shown the following:

Theorem 4.3: Consider G(n, λ) an n-nodes power law

graph with 2 < λ < 3. The worst case stretch over all node

pairs in G(n, λ) of a route found by PIE is O(log n) a.s.

Note that this is a worst-case bound when only one tree is

used. We observe in the next section that both the average and

the maximum stretch do not vary with n.

E. Protocol Overhead

Due to space constraints, we provide only a few key

observations related to the protocol overhead:

• Maintaining a tree requires that each node maintains a

shortest path to that tree’s root. If log n trees are used,

log n such shortest paths need to be maintained.

• As a comparison, shortest paths algorithms typically rely

on distributed protocols that are extremely similar to the

spanning tree construction, building n spanning trees, one

rooted at each node.

• All the control messages used by PIE have a size poly-

logarithmic in n.

• More than network overhead, the re-computation of the

routing table is perhaps the biggest burden of traditional

algorithms. PIE only manipulates extremely small (poly-

logarithmic) routing state and removes this issue.

• For any pro-active routing protocol used in a dynamic

topology, there exists a necessary tradeoff between the

frequency with which control messages are sent, and the

ability of the algorithm to successfully bring packets at

destination at any time. We observe in the next section

that, due to its geometrical nature, PIE is significantly

more resilient to network failures than standard algo-

rithms, and requires to re-compute its state less often.

V. EVALUATION

A. Settings

We evaluate the behavior of PIE by using simulations on

several topologies. We wrote our own simulator that we opti-

mized to simulate routing on large graphs. We performed ex-

tensive simulations of PIE on several Internet-like graphs [37],

[38], [39], [40], [41], on which the results were very similar.

To spare space and to be able to explore more of the parameter

space, we display results only for the two following topologies:

• DIMES [37] is a collaborative project that uses thousands

of end-host agents to reproduce the topology of the

Internet as accurately as possible. We use the AS-level

dataset of March 2010. We consider all the links as

symmetrical and remove the nodes that are not part of the

main component, yielding a topology graph of 26,424 AS

nodes. We measured λ to be about 2.06 for this graph.

• GLP (Generalized Linear Preference) [38] is a prefer-

ential attachment model that builds on the well-known

scheme of Barabási et al. [39]. This model allows us to

tune λ while producing graphs that exhibit some given

properties such as characteristic path length, clustering

coefficient or distribution of the highest degrees. The

main benefit, of such a synthetic model over a fixed

snapshot of the current Internet, is that it allows to

generate larger graphs of varying size in order to study

the scalability of PIE.

We consider weighted and unweighted graphs. The weights

are drawn uniformly in [1,10], which can for instance be

thought of as a function of a financial cost and a link capacity,

and are comparable to the ISP’s link weights range. Such a cost

55

1.0 1.2 1.4 1.6 1.8 2.0
stretch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
pr

op
or

ti
on

of
ro

ut
es

unweighted, m = 1

unweighted, m = 2

unweighted, m = 4

unweighted, m = 8

weighted, m = 1

weighted, m = 2

weighted, m = 4

weighted, m = 8

Fig. 3. DIMES topology. Empirical CDFs of the path stretchs for several
values of m (the number of levels), with and without costs attributed to links.

function naturally produces a large amount of violations of the

triangle inequality in the graph, which are known to induce

much distortion in Euclidean embeddings [29]. For each set-

ting, the statistics have been obtained by simulating routes be-

tween 105 distinct, randomly chosen source-destination pairs,

over 10 independent experiments using different seeds.

B. Results

1) Performance: Figure 3 shows the CDFs of the path

stretchs obtained on the DIMES topology, with a varying

number of locality levels. The results are striking: even when

only one tree is used, more than 96% of the routes have stretch

below 1.4. For m ≥ 4, the average stretch is below 1.05 and,

on the unweighted graph, 90% or more of the routes found

by PIE are the shortest. For m ≥ 7, we measured the average

stretch to be below 1.025. The maximum observed stretch

over all the simulations on the unweighted graph was 2, which

is indeed better than the best possible upper bound of 3 for

compact routing schemes.

Figure 4 shows the evolution of the average stretch when the

network grows, on unweighted GLP graphs with 2 ≤ λ ≤ 2.3.

Here and in the following experiments, the number of levels

is m ∈ O(log2 n)
1. Figure 5 shows the proportion of shortest

paths found by PIE. It appears clearly that the good quality

of the routes found by PIE scales perfectly with the size of

the network: the average stretch always stays below 1.06 and

the proportion of shortest routes above 80%. The stretch even

appears to slightly decrease with n, this comes from our choice

for the computation of m.

2) Scalability: Figure 6 shows the total number of coordi-

nates required at each node by all the trees in the last scenario.

Also plotted is a (shifted) fit with a function O(log3 n)
(note the logarithmic scale of the x-axis). As predicted in

Section IV-C, the embedding of m trees by PIE produces

O(log3 n) coordinates, hence meeting the scalability promises.

1The exact function that we use is m = �log2(n)−7� (this function yields
m ∈ {2, . . . , 9} for the values of n that we consider).

103 104 105

network size n

1.00

1.02

1.04

1.06

1.08

1.10

st
re

tc
h

λ ≈ 2.0
λ ≈ 2.1
λ ≈ 2.2
λ ≈ 2.3

Fig. 4. GLP topology. Average stretch as a function of n, for 2 ≤ λ ≤ 2.3.
For each value of n, the 95-th percentile of the stretch was 4/3 or less.

103 104 105

network size n

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

pr
op

or
ti

on
of

op
ti

m
al

pa
th

s
us

ed
λ ≈ 2.0
λ ≈ 2.1
λ ≈ 2.2
λ ≈ 2.3

Fig. 5. GLP topology. Proportion of shortest paths among all the paths found
by PIE, as a function of n, for 2 ≤ λ ≤ 2.3.

3) Resilience to Network Failures: We consider a scenario

in which some randomly chosen nodes fail. If a node has

failed, its neighbors cannot send messages to it anymore. We

evaluate the success ratio of the routing procedure, after some

proportion of the nodes has failed, but before the algorithm

has had time to react and adapt the routing tables.

Figure 7 shows the proportion of successful routes (success

ratio) as a function of the percentage of nodes that have

failed, on the unweighted DIMES topology. PIE maintains a

significantly higher number of successful paths than traditional

shortest paths algorithms. This is explained by considering the

greedy nature of the forwarding procedure of PIE: forwarding

to any neighbor that is closer to the destination provides

route diversity gain, while schemes producing 1-to-1 mappings

between destinations and next hops (including compact routing

schemes), do not benefit from this route diversity.

When only one tree is used, PIE consistently reduces the

number of routing failures by at least 20%, and this proportion

jumps to 50% when m = 8. Even in the extremely unlikely

scenario where 10% of the Internet fails, PIE could manage

to maintain a high success ratio, about 90%. One direct

consequence is that, for a given success ratio, PIE does not

need to recompute its state as often as standard algorithms.

4) Comparison with the State of the Art: We compare PIE

with the general compact routing scheme [22] (that we denote

56

103 104 105

network size n

50

100

150

200

250

300
nu

m
be

r
of

co
or

di
na

te
s

O(log3 n)

PIE

Fig. 6. GLP topology. Scalability of the total number of coordinates.
The mininimum, maximum and average number of coordinates per node are
shown. The curve above is a (shifted) plot of (2 + log10 n)

3 ∈ O(log3 n).

0 2 4 6 8 10
percentage nodes failed

0.75

0.80

0.85

0.90

0.95

1.00

su
cc

es
s

ra
ti

o

m = 8

m = 6

m = 2

m = 1

shortest path

Fig. 7. DIMES topology. Proportion of successful routes as a function of
the percentage of failed nodes, for several values of m.

by TZ). In addition we also compare it with the specialized
compact routing scheme [26], that is especially targeted for

power law graphs (that we denote by BC). It is proposed

in [26] to combine TZ and BC in order to obtain a new

scheme (that we denote by TZ+BC), which uses the best of

the routes found by TZ and BC taken together. We recall that

TZ achieves only O(
√
n log n) scalability for the routing table

size, and BC requires a complete knowledge of the graph at

all the nodes and is not translated in a distributed protocol.

TZ+BC accumulates these two fundamental issues.

The authors of [26] publicly provide the graphs that they

used to obtain their simulation results with λ ∈ {2, 2.1, 2.2}.
We can therefore run PIE on these exact same graphs and

compare the results. This is shown on Figure 8. Critically, PIE

performs significantly better than its less scalable, respectively

centralized, counterparts. It even finds similar or better routes

than the best routes found by TZ and BC taken together.

VI. DISCUSSION

While we demonstrate the scalability of our routing method

from a theoretical point of view and provide the corresponding

distributed protocol, translating this protocol to a deployment

2.00 2.05 2.10 2.15 2.20
λ

1.05

1.10

1.15

1.20

1.25

m
ea

n
st

re
tc

h

TZ

BC

TZ+BC

PIE

Fig. 8. Comparison of the mean stretch obtained by PIE, [22] (TZ) and [26]
(BC). The values plotted for BC and TZ come from [26], as do the graphs
used for the simulations. In this scenario, the number of nodes is 104, but
the main connected components of the graphs have size n ≈ 8400.

environment requires a couple more steps. In a single adminis-

trative domain, its deployment would be easy, as ASs run their

own routing protocol internally. Since some ASs are relatively

large, they would benefit from the scalability of our scheme.

Similarly, our protocol would be practical over large overlay

networks, where the weights would be dependent on the target

that the overlay aims to achieve (for instance, minimize delay

between overlay nodes).

For the wider Internet, the issue becomes to integrate our

protocol with BGP. The simplest integration would be to build

tree(s) of level 0 between the ASs and trees of higher levels

within the ASs. Internally, the ease of geometric routing would

prevail. Externally, BGP tables and the existing IP nomencla-

ture could be kept. Such an approach would already benefit

from the lightweight geometric coordinates for forwarding, but

would still require O(n) memory.

The best integration would thus be to modify BGP so as to

fully take advantage of PIE. While this is beyond the scope

of this paper, we contend that it is possible to achieve. As a

simple example, consider four ASs, AS1 through AS4, with

AS1 and AS4 both being connected through both AS2 and

AS3. Assume that BGP is configured so as to prevent AS3

from being used as a transit AS between AS1 and AS4.

Assume further that, rather than using STP to create and

propagate the coordinates, we now use a BGP-like mechanism.

When AS3 receives the eBGP message from AS1 to create

routing coordinates, it propagates it internally, but not through

its eBGP connection to AS4. On the other hand, AS2 does

according to its BGP policy. Thus, traffic from AS1 to AS4

will see AS2 as in between them in the metric space, and AS3

as in a wrong direction and routing will naturally go through

AS2. The weights between ASs can be built upon the BGP

attributes as well. The fact that PIE adapts well to arbitrary link

costs provides good support to use it for traffic engineering.

This basic example shows that there is enough expressive-

ness in creating the coordinates of PIE to satisfy some basic

policy mechanisms.

57

VII. CONCLUSION

We have presented and evaluated PIE, a distributed protocol

that produces a greedy embedding. It does so by isometri-

cally embedding trees in non-Euclidean spaces of dimension

O(log2(n)). Each node in the graph belongs to O(log(n))
trees. The greediness of the embedding allows the forwarding

procedure to take any available shortcut off the trees while

avoiding loops and guaranteeing the success of routing. PIE

typically relaxes the deterministic guarantees provided by

classic compact routing schemes, in order to be written as

a distributed protocol. The bottomline of the good features

of PIE is that these guarantees are now probabilistic, satisfied

with probability one on the relevant categories of large graphs.

We have proved that PIE achieves a success ratio of 100%

on any graph, that it provides polylogarithmic scalability, and

we have given a logarithmic upper bound on the path stretch.

We have used large-scale simulation on synthetic and real-

world topologies to observe that the stretch is independent of

n and that it remains extremely low, typically lower than for

centralized or less scalable state-of-the-art algorithms.

PIE comes in a clean-slate perspective. We briefly discussed

the challenges related to any replacement of the existing

protocols and gave indications that such a geometric scheme

could be used with traffic engineering and policy routing,

making this a direction worth exploring for future work.

We can draw a few orthogonal considerations from the good

stretch performance obtained by PIE. It is a direct indicator

of the self-similar tree-like structure of the Internet, and it

shows that the embedding has low distortion. It would thus

probably suit well distance estimation tasks in the Internet, as

it is required by many overlay and peer-to-peer applications.

REFERENCES

[1] D. Meyer, L. Zhang, and K. Fall, “Report from the iab workshop on
routing and addressing,” http://tools.ietf.org/html/draft-iab-raws-report-
01.html, Feb. 2007.

[2] C. Gavoille and M. Gengler, “Space-efficiency for routing schemes of
stretch factor three,” Journal of Parallel and Distributed Computing,
vol. 61, pp. 61–679, 1997.

[3] S. Milgram, “The small world problem,” Psychology Today, vol. 2, pp.
60–67, 1967.

[4] R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the
Internet: A Statistical Physics Approach. New York, NY, USA:
Cambridge University Press, 2004.

[5] C. Papadimitriou and D. Ratajczak, “On a conjecture related to geomet-
ric routing,” Theoretical Computer Science, vol. 244, no. 1, 2005.

[6] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in Proceedings of
ACM MobiCom, 2003, pp. 96–108.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentral-
ized network coordinate system,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 4, pp. 15–26, 2004.

[8] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc
routing: of theory and practice,” in PODC ’03, 2003, pp. 63–72.

[9] S. Durocher, D. Kirkpatrick, and L. Naranayan, “On routing with
guaranteed delivery in three-dimensional ad hoc wireless newtorks,” in
Proceedings of ICDNC, 2008, pp. 546–557.

[10] S. Subramanian, S. Shakkottai, and P. Gupta, “On optimal geographic
routing in wireless networks with holes and non-uniform traffic,” in
Proceedings of Infocom, 2008.

[11] P. Indyk and J. Matousek, “Low-distortion embeddings of finite metric
spaces,” in in Handbook of Discrete and Computational Geometry.
CRC Press, 2004, pp. 177–196.

[12] P. Maymounkov, “Greedy embeddings, trees and Euclidian
vs. Lobachevsky geometry,” Technical Report, available at
http://pdos.csail.mit.edu/ petar/pubs.html, 2006.

[13] A. Moitra and T. Leighton, “Some results on greedy embeddings
in metric spaces,” Foundations of Computer Science, Annual IEEE
Symposium on, vol. 0, pp. 337–346, 2008.

[14] R. Kleinberg, “Geographic routing using hyperbolic space,” in Proceed-
ings of Infocom, 2007.

[15] A. Cvetkovski and M. Crovella, “Hyperbolic embedding and routing for
dynamic graphs,” in Proceedings of Infocom 2009, April 2009.

[16] M. B. Fragkiskos Papadopoulos, Dmitri Krioukov and A. Vahdat,
“Greedy forwarding in dynamic scale-free networks embedded in hy-
perbolic metric spaces,” in Proceedings of Infocom, 2010.

[17] M. Boguñá, F. Papadopoulos, and D. Krioukov, “Sustaining the Internet
with hyperbolic mapping,” Nature Communications, vol. 1, no. 6, pp.
1–8, September 2010.

[18] C. Westphal and G. Pei, “Scalable routing via greedy embedding,” in
Proceedings of Infocom Mini-Conference, April 2009.

[19] A. Gupta, A. Kumar, and R. Rastogi, “Traveling with a pez dispenser
(or, routing issues in mpls),” SIAM J. Comput., vol. 34, no. 2, 2005.

[20] R. Flury, S. Pemmaraju, and R. Wattenhofer, “Greedy routing with
bounded stretch,” in Proc. of Infocom, April 2009.

[21] D. Krioukov, kc claffy, K. Fall, and A. Brady, “On compact routing for
the Internet,” SIGCOMM Comp. Comm. Rev., vol. 37, no. 3, 2007.

[22] M. Thorup and U. Zwick, “Compact routing schemes,” in ACM Sympo-
sium on Parallel Algorithms and Architectures, 2001, pp. 1–10.

[23] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith, “S4: Small state and
small stretch routing protocol for large wireless sensor networks,” in
Proceedings of the 4th USENIX NSDI 2007, April 2007.

[24] A. Singla, P. B. Godfrey, K. Fall, G. Iannaccone, and S. Ratnasamy,
“Scalable routing on flat names,” in Proceedings of Co-NEXT, 2010.

[25] W. Chen, C. Sommer, S.-H. Teng, and Y. Wang, “Compact routing in
power-law graphs,” in Proceedings of DISC’09, 2009, pp. 379–391.

[26] A. Brady and L. Cowen, “Compact routing on power-law graphs with
additive stretch,” in ALENEX, 2006.

[27] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, and A. Rowstron,
“Virtual Ring Routing: Network routing inspired by DHTs,” in Proc. of
ACM SIGCOMM’06, 2006, pp. 351–362.

[28] M. Ghaffari, B. Hariri, and S. Shirmohammadi, “On the necessity of us-
ing Delaunay triangulation substrate in greedy routing based networks,”
IEEE Communications Letters, vol. 14, no. 3, pp. 266–268, March 2010.

[29] S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha, “On suitability of Euclidean
embedding for host-based network coordinate systems,” Networking,
IEEE/ACM Transactions on, vol. 18, no. 1, pp. 27 –40, 2010.

[30] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and
some of its algorithmic applications,” Combinatorica, vol. 15, pp. 577–
591, 1994.

[31] R. Perlman, “An algorithm for distributed computation of a spanning
tree in an extended LAN,” ACM SIGCOMM Computer Communication
Review, vol. 15, no. 4, pp. 44–53, 1985.

[32] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in Proceedings of SIGCOMM ’99. New
York, NY, USA: ACM, 1999, pp. 251–262.

[33] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, k. c.
claffy, and A. Vahdat, “The internet as-level topology: three data sources
and one definitive metric,” SIGCOMM Comp. Comm. Rev., 2006.

[34] F. Chung and L. Lu, “The average distances in random graphs with given
expected degrees,” Internet Mathematics, vol. 1, pp. 15 879–15 882,
2002.

[35] L. Li, D. Alderson, J. C. Doyle, and W. Willinger, “Towards a theory
of scale-free graphs: Definition, properties, and implications,” Internet
Mathematics, vol. 2, p. 4, 2005.

[36] F. Chung and L. Lu, “The diameter of random sparse graphs,” in
Advances in Applied Math, pp. 257–279.

[37] Y. Shavitt and E. Shir, “Dimes: let the internet measure itself,” SIG-
COMM Comput. Commun. Rev., vol. 35, pp. 71–74, October 2005.

[38] T. Bu and D. F. Towsley, “On distinguishing between internet power
law topology generators,” in Proc. of Infocom, 2002.

[39] A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[40] G. Bianconi and A.-L. Barabási, “Competition and multiscaling in
evolving networks,” Europhysics Letters, vol. 54, no. 4, p. 436, 2001.

[41] J. Winick and S. Jamin, “Inet-3.0: Internet topology generator,” Tech.
Rep., 2002.

58

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

