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Internet routing has a scalability problem
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e Costly recomputation of tables
Instabilities

Costly lookups in huge tables

Energy hungry

Heavily relies on Moore's law to keep up
Could get much worse with IPv6. ..
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Fundamental limit

e Stretch: Length of a path found by a routing algorithm, divided by
the shortest possible path length

[Gavoille et al. '97]

For a network of n nodes, guaranteeing a stretch strictly below 3
requires routing tables of size O(n)

= Consider schemes that may inflate path length to
achieve sub-linear scalability



Geometric routing

Each node needs to know only the coordinates of its neighbors )

Forwarding: pick the neighbor closest to the destination

y
x _d

Problem: The packets can meet a dead end! J




The Internet has a hierarchical structure
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Tree routing

e Trees are easy to build distributively

e They can ensure 100% routing success (exactly one path between any
two nodes)



Tree routing

e Trees are easy to build distributively

e They can ensure 100% routing success (exactly one path between any
two nodes)

Tree routing is not efficient. .. J




PIE embeds trees into metric spaces

e Root has coordinate O

e Binary representation of each child
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PIE embeds trees into metric spaces

e Then recursively, each parent:
» Send its coordinates to its children. The children keep the signs, but
increase absolute values of these coordinates by link cost to parent

» If more than one child: the parent also sends the binary representation
of each child, that is appended to the coordinates
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PIE embeds trees into metric spaces

e Then recursively, each parent:
» Send its coordinates to its children. The children keep the signs, but
increase absolute values of these coordinates by link cost to parent
» If more than one child: the parent also sends the binary representation
of each child, that is appended to the coordinates
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PIE embeds trees into metric spaces

e Then recursively, each parent:
» Send its coordinates to its children. The children keep the signs, but
increase absolute values of these coordinates by link cost to parent
» If more than one child: the parent also sends the binary representation
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Routing using the embedding

Distance computation:
Iso-norm on the common coordinates

2,-2,—2,-1,-1 d
4,—4,—4,-3,3
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2,-2,-2,1, -1
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Routing using the embedding

Distance computation:
Iso-norm on the common coordinates

4,—4,—4,-3,3

stretch = 1
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PIE embeds trees into metric spaces

e This approach still guarantees 100% routing success
e |t is better than tree routing

e But still lacks some topological information in some situations. . .

4, —4,—4,-3,3

stretch = 1
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Solution: build several smaller trees

e Easy to build distributively (random self-elected roots)

e Still scalable if each node belongs to O(log n) trees

®-2 -2

®-1,-1
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Trees covering several levels

e Forwarding: use common tree that provides smallest distance

e Big trees: good for long paths

Small trees: good for short paths

Match well the self-similar structure of the Internet

O(log n) levels — only O(log n) set of coordinates per node

Level 1: Level 2:
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Trees covering several levels

Level 1

Level 2
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Wrapping up

Theorem 1

The number of coordinates is O(Iog3 n) w.p. 1 for random power-law
graphs

Proof uses recent results on the diameter of such graphs

Theorem 2
The embedding produced by PIE ensures 100% routing success J

The embedding is greedy

e Distributed
» Embedding procedure goes from root to leaves
» Self-elected roots

e Local and fast forwarding decisions

» Only compute a few distances
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Performance

e Internet AS levelll
e m: Number of levels
e Link weights ~ Unif[1, 10]

Stretch CDF:

"
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g unwelghted, m Average stretch < 1.03
‘5 0.80 +~— unweighted, m=2 ||
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[1]:

DIMES [Shavitt et al. '05], dataset of March 2010
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Performance

e Synthetic graphs[ll, with power-law exponent A
e Number of levels m € O(log n)

Average stretch:

e—e A=2.0
= A=2.1
—a Ax2.2
a—a Am2.3

1.08,

1.06

— T

1.02 .—.‘.\./“./‘\1

stretch

10° 10* 10°
network size n

Low stretch scales with the size of the network

[1]: GLP [Bu et al. '02]

15/18



Scalability

e Number of levels m € O(log n)

Total number of coordinates per node (min, max, average):
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Routing tables of size O(log? n)
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Resilience to network failures

Geometric coordinates provide route diversity for free

Routing success after failures:
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percent nodes failed

For a given success ratio,
PIE needs to re-compute its state less often
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Conclusion

e Distributed construction of the coordinates

Scalable: routing tables of size O(log® n) with probability 1

Efficient paths

» Can maintain average stretch < 1.03
» Adapts well to weighted graphs

Guaranteed routing success on any connected graph

Future work:

» Policy routing, traffic engineering, etc. ..
» Economic considerations (who is the root?)

Other applications: overlay, peer-to-peer, distance estimation, etc...
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Congestion

Congestion (number of packets relayed) CDF:

Proportion of nodes

Congestion — Costs Unif[1,10], Barabasi topology.
T —

— — —tree routing
1level
— — Slevels

shortest path ||

The congestion induced is the

5

10
Congestion

same than for shortest path routing J
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Some related work

Geographic/geometric routing for ad-hoc networks

» Euclidean embeddings, not well suited for the Internet, local minima
Compact routing [Thorup et al. '01] (TZ)

» Scalability O(n'/2) — still a fractional power of n

Hyperbolic embeddings of Internet topology [Papadopoulos et al.
2010] and [Boguna et al. 2010]

» Presence of local minima, routing success not guaranteed

Quasi-greedy embedding in Euclidean spaces [Westphal et al. '09]
» Produces local minima and requires a recovery mechanism

Geometric routing with bounded stretch [Flury et al. '09]
» Not distributed

Compact routing for power-law graphs [Brady et al. '06] (BC)
> Not distributed



Comparison with TZ, BC and TZ+BC

e Power-law random graphs with exponent A

e Graphs and results for TZ, BC and TZ+BC come from [Brady et al.
'06]

Average stretch:

1.25

1.20 BC

mean stretch

TZ+BC

1.10
PIE

10557455 2.05 2.10 215 2.20
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