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Internet routing has a scalability problem

from
[Andersen et al. ’08]

• Costly recomputation of tables
• Instabilities
• Costly lookups in huge tables
• Energy hungry
• Heavily relies on Moore’s law to keep up
• Could get much worse with IPv6. . .
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Fundamental limit

• Stretch: Length of a path found by a routing algorithm, divided by
the shortest possible path length

[Gavoille et al. ’97]

For a network of n nodes, guaranteeing a stretch strictly below 3
requires routing tables of size O(n)

⇒ Consider schemes that may inflate path length to

achieve sub-linear scalability
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Geometric routing

Each node needs to know only the coordinates of its neighbors

Forwarding: pick the neighbor closest to the destination
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Problem: The packets can meet a dead end!
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The Internet has a hierarchical structure
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Tree routing

• Trees are easy to build distributively

• They can ensure 100% routing success (exactly one path between any
two nodes)
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s

stretch = 1.5
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Tree routing is not efficient. . .
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PIE embeds trees into metric spaces

• Root has coordinate 0

• Binary representation of each child
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PIE embeds trees into metric spaces

• Then recursively, each parent:
◮ Send its coordinates to its children. The children keep the signs, but

increase absolute values of these coordinates by link cost to parent
◮ If more than one child: the parent also sends the binary representation

of each child, that is appended to the coordinates
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Routing using the embedding

Distance computation:
l∞-norm on the common coordinates
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PIE embeds trees into metric spaces

• This approach still guarantees 100% routing success
• It is better than tree routing

• But still lacks some topological information in some situations. . .
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Solution: build several smaller trees

• Easy to build distributively (random self-elected roots)

• Still scalable if each node belongs to O(log n) trees
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Trees covering several levels

• Forwarding: use common tree that provides smallest distance

• Big trees: good for long paths

• Small trees: good for short paths

• Match well the self-similar structure of the Internet

• O(log n) levels → only O(log n) set of coordinates per node

Level 1: Level 2:
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Trees covering several levels
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Trees covering several levels
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Wrapping up

Theorem 1

The number of coordinates is O(log3 n) w.p. 1 for random power-law
graphs

Proof uses recent results on the diameter of such graphs

Theorem 2

The embedding produced by PIE ensures 100% routing success

The embedding is greedy

• Distributed
◮ Embedding procedure goes from root to leaves
◮ Self-elected roots

• Local and fast forwarding decisions
◮ Only compute a few distances
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Performance

• Internet AS level[1]

• m: Number of levels
• Link weights ∼ Unif[1, 10]

Stretch CDF:
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[1]: DIMES [Shavitt et al. ’05], dataset of March 2010
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Performance

• Synthetic graphs[1], with power-law exponent λ
• Number of levels m ∈ O(log n)

Average stretch:
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[1]: GLP [Bu et al. ’02]
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Scalability

• Number of levels m ∈ O(log n)

Total number of coordinates per node (min, max, average):
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Routing tables of size O(log3 n)
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Resilience to network failures

Geometric coordinates provide route diversity for free

Routing success after failures:
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For a given success ratio,
PIE needs to re-compute its state less often

17 / 18



Conclusion

• Distributed construction of the coordinates

• Scalable: routing tables of size O(log3 n) with probability 1

• Efficient paths

◮ Can maintain average stretch < 1.03
◮ Adapts well to weighted graphs

• Guaranteed routing success on any connected graph

• Other applications: overlay, peer-to-peer, distance estimation, etc...

• Future work:
◮ Policy routing, traffic engineering, etc. . .
◮ Economic considerations (who is the root?)
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Congestion

Congestion (number of packets relayed) CDF:
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The congestion induced is the same than for shortest path routing
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Some related work

• Geographic/geometric routing for ad-hoc networks
◮ Euclidean embeddings, not well suited for the Internet, local minima

• Compact routing [Thorup et al. ’01] (TZ)
◮ Scalability O(n1/2) → still a fractional power of n

• Hyperbolic embeddings of Internet topology [Papadopoulos et al.
2010] and [Boguna et al. 2010]

◮ Presence of local minima, routing success not guaranteed

• Quasi-greedy embedding in Euclidean spaces [Westphal et al. ’09]
◮ Produces local minima and requires a recovery mechanism

• Geometric routing with bounded stretch [Flury et al. ’09]
◮ Not distributed

• Compact routing for power-law graphs [Brady et al. ’06] (BC)
◮ Not distributed
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Comparison with TZ, BC and TZ+BC

• Power-law random graphs with exponent λ
• Graphs and results for TZ, BC and TZ+BC come from [Brady et al.
’06]

Average stretch:
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