Scalable Routing Easy as PIE: a Practical Isometric Embedding Protocol

Julien Herzen (EPFL)

joint work with Cedric Westphal (Huawei Innovations) Patrick Thiran (EPFL)

October 18th, 2011

Internet routing has a scalability problem

Could get much worse with IPv6...

Fundamental limit

• **Stretch:** Length of a path found by a routing algorithm, divided by the shortest possible path length

[Gavoille et al. '97]

For a network of *n* nodes, guaranteeing a stretch strictly below 3 requires routing tables of size O(n)

\Rightarrow Consider schemes that *may* inflate path length to achieve sub-linear scalability

Geometric routing

Each node needs to know only the coordinates of its neighbors

Forwarding: pick the neighbor closest to the destination

Problem: The packets can meet a dead end!

The Internet has a hierarchical structure

Tree routing

- Trees are easy to build distributively
- They can ensure 100% routing success (exactly one path between any two nodes)

Tree routing

- Trees are easy to build distributively
- They can ensure 100% routing success (exactly one path between any two nodes)

Tree routing is not efficient...

- Root has coordinate 0
- Binary representation of each child

- Then recursively, each parent:
 - Send its coordinates to its children. The children keep the signs, but increase absolute values of these coordinates by link cost to parent
 - If more than one child: the parent also sends the binary representation of each child, that is appended to the coordinates

- Then recursively, each parent:
 - Send its coordinates to its children. The children keep the signs, but increase absolute values of these coordinates by link cost to parent
 - If more than one child: the parent also sends the binary representation of each child, that is appended to the coordinates

- Then recursively, each parent:
 - Send its coordinates to its children. The children keep the signs, but increase absolute values of these coordinates by link cost to parent
 - If more than one child: the parent also sends the binary representation of each child, that is appended to the coordinates

Distance computation: I_{∞} -norm on the **common coordinates**

 $\label{eq:listance} \begin{array}{l} \text{Distance computation:} \\ \textit{I}_{\infty}\text{-norm on the common coordinates} \end{array}$

 $\label{eq:listance} \begin{array}{l} \text{Distance computation:} \\ \textit{I}_{\infty}\text{-norm on the common coordinates} \end{array}$

 $\label{eq:listance} \begin{array}{l} \text{Distance computation:} \\ \textit{I}_{\infty}\text{-norm on the common coordinates} \end{array}$

- This approach still guarantees 100% routing success
- It is better than tree routing
- But still lacks some topological information in some situations...

- This approach still guarantees 100% routing success
- It is better than tree routing
- But still lacks some topological information in some situations...

- This approach still guarantees 100% routing success
- It is better than tree routing
- But still lacks some topological information in some situations...

Solution: build several smaller trees

- Easy to build distributively (random self-elected roots)
- Still scalable if each node belongs to $O(\log n)$ trees

Solution: build several smaller trees

- Easy to build distributively (random self-elected roots)
- Still scalable if each node belongs to $O(\log n)$ trees

Solution: build several smaller trees

- Easy to build distributively (random self-elected roots)
- Still scalable if each node belongs to $O(\log n)$ trees

- Forwarding: use common tree that provides smallest distance
- Big trees: good for long paths
- Small trees: good for short paths
- Match well the self-similar structure of the Internet
- $O(\log n)$ levels \rightarrow only $O(\log n)$ set of coordinates per node

Level 1:

Level 2:

Wrapping up

Theorem 1

The number of coordinates is $O(\log^3 n)$ w.p. 1 for random power-law graphs

Proof uses recent results on the diameter of such graphs

Theorem 2

The embedding produced by PIE ensures 100% routing success

The embedding is *greedy*

Distributed

- Embedding procedure goes from root to leaves
- Self-elected roots

• Local and fast forwarding decisions

Only compute a few distances

Performance

- Internet AS level^[1]
- m: Number of levels
- Link weights \sim Unif[1,10]

Stretch CDF:

Average stretch < 1.03 for 7 levels and more

[1]: DIMES [Shavitt et al. '05], dataset of March 2010

Performance

- Synthetic graphs^[1], with power-law exponent λ
- Number of levels $m \in O(\log n)$

Low stretch scales with the size of the network

[1]: GLP [Bu et al. '02]

Scalability

• Number of levels $m \in O(\log n)$

Total number of coordinates per node (min, max, average):

Routing tables of size $O(\log^3 n)$

Resilience to network failures

Geometric coordinates provide route diversity for free

Routing success after failures:

For a given success ratio, PIE needs to re-compute its state less often

Conclusion

- **Distributed** construction of the coordinates
- Scalable: routing tables of size $O(\log^3 n)$ with probability 1
- Efficient paths
 - Can maintain average stretch < 1.03
 - Adapts well to weighted graphs
- Guaranteed routing success on any connected graph
- Other applications: overlay, peer-to-peer, distance estimation, etc...
- Future work:
 - Policy routing, traffic engineering, etc...
 - Economic considerations (who is the root?)

Congestion

Congestion (number of packets relayed) CDF:

The congestion induced is the same than for shortest path routing

Some related work

- Geographic/geometric routing for ad-hoc networks
 - Euclidean embeddings, not well suited for the Internet, local minima
- Compact routing [Thorup et al. '01] (TZ)
 - Scalability $O(n^{1/2}) \rightarrow \text{still}$ a fractional power of n
- Hyperbolic embeddings of Internet topology [Papadopoulos et al. 2010] and [Boguna et al. 2010]
 - Presence of local minima, routing success not guaranteed
- Quasi-greedy embedding in Euclidean spaces [Westphal et al. '09]
 - Produces local minima and requires a recovery mechanism
- Geometric routing with bounded stretch [Flury et al. '09]
 - Not distributed
- Compact routing for power-law graphs [Brady et al. '06] (BC)
 - Not distributed

Comparison with TZ, BC and TZ+BC

- Power-law random graphs with exponent $\boldsymbol{\lambda}$
- Graphs and results for TZ, BC and TZ+BC come from [Brady et al. '06]

Average stretch: