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Context

Interfering neighboring wi-fi home/office networks

www.wigle.net

Several possible channels (center frequencies)
Variable bandwidth (5 — 20 — 40 — 160 MHz), limited spectrum
Non-heterogeneous density

No central control
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www.wigle.net

Goal

Joint allocation of channel center frequencies and bandwidths

Conflicting goals:
e Bandwidth * = Capacity
e Bandwidth,* = Interference likelihood
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Design Goals

Decentralized algorithm

Global convergence guarantees

Online for adaptivity to time-varying conditions

Transparent to user traffic

Practical for implementation on off-the-shelf 802.11 hardware

Main contribution

The first decentralized algorithm for joint center frequency and bandwidth
adaptation with global convergence guarantees
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Interference Model

Interference produced by k on neighbor /:

l;(k) = airtime(k) - overlap(k, /)
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Interference Model

Interference produced by k on neighbor /:

Ii(k) = airtime(k) - overlap(k, /) )

For two BSSs A and B:

1a(B) =Y > hi(k)

IeA keB



Optimization Objective

Explicit interference vs. bandwidth trade-off:

minimize €:=Y_ > Ia(B) + > " costa(ba)
A

A BeNy

Total interference Sum of bandwidth " costs”

e costa(ba) is the cost that BSS A attributes to using bandwidth ba

e E.g., costa(ba) x1/bp
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Algorithm at BSS A

Initialization:
Pick a random configuration (fa, ba)

After random (exp. distributed) time intervals:
Pick a random configuration (fhew, bnew)

Measure e1 := ) g, (Ia(B) + Ig(A)) + costa(ba) if A uses (fa, ba)
Measure e := > g, (Ia(B) + Ig(A)) + costa(bnew) if A uses (frew, brew)

Compute
4 {1 ife, < e

exp 452 else

Set (fa, ba) = (faew, bnew) With probability Sr
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Convergence

Metropolis sampling for center frequency and bandwidth

Theorem

Denote X, the global state of the network after the n-th iteration.
Consider a network where all the BSSs run our algorithm using a given
parameter T. Then X, is a Markov chain, and it converges in distribution
to

7(X) x e €T

where X is a global state.

e State gets arbitrarily close to optimal for T small enough

e T encodes a trade-off between likelihood of local optima and
asymptotic efficiency



Implementation

e 802.11g with 5, 10 and 20 MHz channel widths

Interference measured by spending < 50 ms. out-of-band

Optional client collaboration for interference measurement

C++ implementation using Click in userspace
costa(ba) = 1/ba
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Performance Evaluation

UDP traffic, client-agnostic: UDP traffic, client-aware:
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Simulation

Random distribution of BSSs on the plane
Capacity of link / = b - log(1 4+ SINR)

costa(ba) = c/ba, optimization objective becomes:

minimize Z Z IA(B)+C-Zl/bA

A BeN4 A

¢ = 0: minimize interference

e ¢ — oo: use largest bandwidth, irrespective of interference
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Simulation

e ¢ — oo: use largest bandwidth, irrespective of interference
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Simulation

Improvement with respect to random allocations

percentage impr:

after 5 iterations:
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Simulation

total spectrum: 45 MHz total spectrum: 70 MHz
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Conclusion

e Distributed, joint allocation of center frequencies and bandwidths

e Bandwidth influences both capacity and interference; ideal spectrum
consumption should depend on network density

e Optimization of an explicit trade-off between interference mitigation
and use of advantageous bandwidths

e Simple optimization objectives yield best results irrespective of
network density

o Large capacity improvements, even when not all BSSs run the
algorithm

o Testbed implementation shows feasibility and improvements compared
to fixed-width graph coloring
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Some Related Work

e Channel allocation / graph coloring, e.g., [Akella et al. 2005,
Kauffmann et al. 2007, Duffy et al. 2011, Leith et al. 2012]

» Main goal: minimize interference (no variable bandwidth)

e Variable bandwidth / white spaces, e.g., [Chandra et al. 2008, Bahl et
al. 2009, Rayanchu et al. 2011]

» Heuristics, no focus on self-organization



Micro-sensing
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Channel widths
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Performance Evaluation (uplink)

UDP traffic, client-agnostic: UDP traffic, client-aware:
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"Bench"” line: centralized graph-coloring for fixed-width channels
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