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Abstract

In this dissertation, we consider the problem of assigning spectrum to wireless local-area
networks (WLANS). In line with recent IEEE 802.11 amendments and newer hardware
capabilities, we consider situations where wireless nodes have the ability to adapt not
only their channel center-frequency but also their channel width. This capability brings
an important additional degree of freedom, which adds more granularity and potentially
enables more efficient spectrum assignments. However, it also comes with new challenges;
when consuming a varying amount of spectrum, the nodes should not only seek to
reduce interference, but they should also seek to efficiently fill the available spectrum.
Furthermore, the performances obtained in practice are especially difficult to predict
when nodes employ variable bandwidths.

We first propose an algorithm that acts in a decentralized way, with no communication
among the neighboring access points (APs). Despite being decentralized, this algorithm is
self-organizing and solves an explicit tradeoff between interference mitigation and efficient
spectrum usage. In order for the APs to continuously adapt their spectrum to neighboring
conditions while using only one network interface, this algorithm relies on a new kind
of measurement, during which the APs monitor their surrounding networks for short
durations. We implement this algorithm on a testbed and observe drastic performance
gains compared to default spectrum assignments, or compared to efficient assignments
using a fixed channel width.

Next, we propose a procedure to explicitly predict the performance achievable in
practice, when nodes operate with arbitrary spectrum configurations, traffic intensities,
transmit powers, etc. This problem is notoriously difficult, as it requires capturing several
complex interactions that take place at the MAC and PHY layers. Rather than trying to
find an explicit model acting at this level of generality, we explore a different point in
the design space. Using a limited number of real-world measurements, we use supervised
machine-learning techniques to learn implicit performance models. We observe that these
models largely outperform other measurement-based models based on SINR, and that
they perform well, even when they are used to predict performance in contexts very
different from the context prevailing during the initial set of measurements used for

learning.

We then build a second algorithm that uses the above-mentioned learned models
to assign the spectrum. This algorithm is distributed and collaborative, meaning that
neighboring APs have to exchange a limited amount of control traffic. It is also utility-
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Abstract

optimal — a feature enabled both by the presence of a model for predicting performance
and the ability of APs to collaboratively take decisions. We implement this algorithm
on a testbed, and we design a simple scheme that enables neighboring APs to discover
themselves and to implement collaboration using their wired backbone network. We
observe that it is possible to effectively gear the performance obtained in practice towards
different objectives (in terms of efficiency and/or fairness), depending on the utility
functions optimized by the nodes.

Finally, we study the problem of scheduling packets both in time and frequency
domains. Such ways of scheduling packets have been made possible by recent progress in
system design, which make it possible to dynamically tune and negotiate the spectrum
band used by each frame. We observe that including frequency-domain decisions enables
the scheduling algorithms to overcome important inefficiencies that are present in the time
domain. In order to achieve these gains, we propose TF-CSMA/CA, a frequency-domain
extension of the CSMA /CA backoff mechanism employed by IEEE 802.11. TF-CSMA /CA
is completely decentralized, and it requires no explicit signaling, synchronization or
spectrum scanning. Yet, we show that it exhibits desirable self-organizing properties in
the spectral domain and achieves excellent performance and fairness.

Keywords: Spectrum allocation, resource allocation, wireless networks, algorithms,
WLANS, performance modeling, self-organization, packet scheduling
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Résumé

Dans cette thése, nous étudions le probléme d’attribution de spectre & des réseaux sans-
fil locaux (WLANS). En accord avec les récentes normes IEEE 802.11 et les nouvelles
possibilités matérielles, nous considérons des situations ol les noeuds sans-fil ont la
possibilité d’adapter non seulement leur fréquence centrale, mais également leur largeur de
bande. Cette possibilité apporte un important degré de liberté, ameéne plus de granularité
et permet d’attribuer le spectre de maniére potentiellement plus efficace. Néanmoins, cela
comporte également de nouveaux défis; lorsque les noeuds peuvent utiliser une quantité
variable de spectre, ils ne doivent plus seulement chercher & minimiser les interférences,
mais également & utiliser le spectre existant de maniére efficace. En outre, les performances
obtenues en pratique deviennent particuliérement difficiles & prédire lorsque les noeuds
utilisent une quantité de spectre variable.

Nous proposons tout d’abord un algorithme qui agit de maniére décentralisée, sans
communication entre points d’accés voisins. Bien qu’il soit décentralisé, cet algorithme
permet aux noeuds d’organiser leur consommation de spectre, et il optimise un compromis
explicite entre le besoin de minimiser I'interférence et celui d’utiliser efficacement le spectre.
Afin que les points d’accés puissent continuellement adapter leurs bandes de fréquences
en réponse aux conditions avoisinantes, tout en n’utilisant qu’une seule interface réseau,
cet algorithme utilise un nouveau type de mesures, durant lesquelles les points d’accés
observent les réseaux avoisinants pendant de courtes durées. Nous avons implémenté
cet algorithme sur du matériel de test et avons observé une amélioration drastique des
performances en comparaison aux attributions de spectre utilisées par défaut, ou en
comparaison & d’autres techniques d’attribution de spectre opérant avec une largeur de

bande fixe.

Nous proposons ensuite une procédure pour prédire la performance qui peut étre
obtenue en pratique, lorsque les noeuds opérent avec des configurations arbitraires de
spectre, charge de trafic, puissance de transmission, etc. Ce probléme est notoirement
difficile, car il requiert de prendre en compte plusieurs interactions complexes qui ont
lieu aux couches d’accés (MAC) et physique (PHY). Plutdt que d’essayer de trouver un
nouveau modéle explicite qui soit suffisamment général, nous explorons une approche
différente. Nous utilisons un nombre limité de mesures provenant d’un vrai réseau, afin
d’obtenir des modéles de performance implicites en utilisant des techniques d’apprentissage
automatique. Nous observons que ces modéles se comportent beaucoup mieux que d’autres
modéles basés sur le rapport du signal sur le bruit et 'interférence (SINR), et qu'ils
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se comportent bien méme lorsqu’ils sont utilisés pour prédire la performance dans des
contextes trés différents de ceux qui prévalaient lors de I'obtention des mesures initiales
utilisées pour 'apprentissage.

Nous construisons ensuite un second algorithme qui utilise les modéles précédemment
appris afin d’attribuer le spectre. Cet algorithme est distribué et collaboratif, ce qui
signifie que les points d’accés voisins ont besoin d’échanger une quantité limitée de trafic
de contrdle. Cet algorithme est également optimal, dans le sens ot il maximise une somme
de fonctions d’utilité. Cette propriété est rendue possible d’'une part par l'existence d’un
modéle qui permet de prédire les performances et d’autre part par le fait que les points
d’accés peuvent prendre des décisions de maniére collaborative. Nous avons implémenté
cet algorithme sur du matériel de test, et nous avons mis au point une technique qui
permet a des points d’accés voisins de se découvrir mutuellement et de mettre en oeuvre
la collaboration en utilisant leur réseau filaire. Nous observons qu’il est possible de choisir
le type de performance obtenue en pratique en fonction de différents objectifs (décrits en
termes d’efficacité et/ou d’équité), qui dépendent des fonctions d’utilité utilisées par les
noeuds.

Finalement, nous étudions le probléme qui consiste & ordonnancer les paquets dans les
domaines temporel et fréquentiel. Cette fagon d’ordonnancer les paquets a été récemment
rendue possible par la mise au point de nouveaux systémes qui permettent d’adapter et de
négocier la bande de fréquences utilisée par chaque frame. Nous observons qu’inclure des
décisions portant sur le domaine fréquentiel permet aux algorithmes d’ordonnancement de
surmonter d’importantes inefficacités présentes dans le domaine temporel. Afin d’obtenir
ces gains, nous proposons TF-CSMA /CA, qui est une extension dans le domaine fréquentiel
de la procédure d’évitement des collisions utilisée par IEEE 802.11. TF-CSMA /CA est
complétement décentralisé et ne requiert aucun trafic de contrdle, aucune procédure de
synchronisation et aucune analyse de spectre. Nous montrons que TF-CSMA /CA permet
aux noeuds de s’auto-organiser dans le domaine fréquentiel et qu’il fournit d’excellentes
caractéristiques de performance et d’équité.

Mots clefs : Attribution de spectre, attribution de resources, réseaux sans-fil, algo-
rithmes, WLANS, modéles de performance, auto-organisation, ordonnancement de paquets.
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Il Introduction

In recent years, Wi-Fi networks have been massively adopted worldwide. These networks
represent an inexpensive and convenient way to provide high-speed connectivity to end-
users in homes, enterprises and commercial hotspots. Recent IEEE 802.11 amendments,
such as 802.11n and 802.11ac, are capable of providing up to several Gbps of raw
transmission speeds, which posits Wi-Fi as an attractive option to replace wired networks,
even in the presence of relatively heavy traffic demands. As of 2015, more than two billion
Wi-Fi devices have been sold annually, and 25% of all households are equipped with a
Wi-Fi network [wi-14]!.

This adoption has been so ubiquitous that it is now common in urban environments
to detect several dozens of operating Wi-Fi access points from any given location. In fact,
it is even possible to use databases of such lists of visible access points in order to build
accurate population-density maps or geo-localization services. In Figure 1.1, we show a
density map of the access points on the East Coast of the United States and in Figure 1.2,
we show a map of some access points in Manhattan. It is clear that the density of Wi-Fi

WisLE, et

Figure 1.1 — Density map of access points detected on the East Coast of the United
States by the community of users of the Wigle.net project. Source: www.wigle.net.

'The fraction is about 50% to 80% of households in developed countries [wia|.
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Figure 1.2 — Map of some access points detected in Manhattan. Each dot represents
the approximate localization of an access point. Source: www.wigle.net.

deployments varies greatly over space (following that of human settlements), and in urban
areas such as Manhattan, Wi-Fi deployments have become extremely dense.

Wi-Fi networks are successful under many aspects, but their success also causes them
to experience a tragedy of the commons. Contrary to wired networks, wireless devices are
susceptible to produce interference with each other if they operate too closely. In general,
interference appears if some neighboring Wi-Fi devices transmit at the same time and
on the same frequency; these situations can cause packet losses and reduce the effective
capacity achievable on the corresponding Wi-Fi links. This is an important problem in
practice, because the ongoing success of Wi-Fi often results in a high average number of
devices that are physically close enough in order to interfere with each other (at least in

urban environments such as Manhattan).

In order to mitigate interference, to maintain a high effective capacity and to exploit
as efficiently as possible the wireless medium, neighboring devices need to separate their
transmissions in time and/or frequency domains (i.e., avoid transmitting at the same time
on the same frequency). To this end, 802.11 employs a time-domain mechanism based
on CSMA /CA, whereby the stations “listen” on the wireless medium before attempting
a transmission. This mechanism has been an important part of the success of Wi-Fi; it
is completely decentralized and performs well in practice. Ideally, however, this time-
domain operation should also be complemented by some efficient way of deciding on
which spectrum band the networks should operate. Separating transmissions also in
the frequency domain (rather than in the time domain only) is desirable for four main
reasons. First, it is clear that Wi-Fi networks benefit from some level of organization
in the spectral domain, in order to efficiently exploit the available spectrum and avoid
that some frequency bands remain vacant (or lightly used) when the overall load is high.
Second, we will see that separating transmissions in frequency domain drastically reduces
a number of significant time-domain overheads of the MAC layer. These overheads are due
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in part to the CSMA /CA mechanism and they have been exacerbated by recent 802.11
physical layers (this point will be made precise in Chapter 5). Third, we will also see
that adapting the amount of consumed spectrum (i.e., the channel width) is an efficient
way to achieve load balancing among several Wi-Fi links contending for access. Finally,
the recent 802.11n and 802.11ac amendments have the ability to use large channel widths
(up to 40 MHz for 802.11n and up to 160 MHz for 802.11ac — in contrast to 20 MHz for
older 802.11 amendments). These large bandwidths, along with the use of aggressive
modulation schemes and sophisticated signal processing techniques such as multi-user
MIMO (MU-MIMO), enable these amendments to obtain very high transmission rates
of several Gbps at the physical layer. However, using large bandwidths creates more
interference, and these recent amendments therefore make it increasingly important to
efficiently assign the available spectrum bands?.

Although organizing transmissions in the frequency domain has the potential to
greatly improve performance, current Wi-Fi networks are usually far from using the
spectrum efficiently. The 802.11 standard does not specify how to use the frequency
domain to improve performance, and typical off-the-shelf access points often use a fixed
and arbitrary channel, or at best provide some “auto-channel” functionality, whereby
they scan the available spectrum (usually at boot time) and select the channel with the
smallest number of detected concurrent networks. This approach to spectrum assignment
is mostly monolithic, in the sense that it does not modulate the amount of consumed
spectrum (but selects only fixed-width channels), and it chooses an operating channel
once and for all (or very infrequently).

The main goal of this thesis is to propose new spectrum-assignment algorithms that
depart from this monolithic approach. The proposed algorithms are flexible both in
terms of spectrum consumption — they do not only choose the center-frequencies, but also
decide how much spectrum should be used by each device —, and in terms of dynamics —
they continuously change the spectrum assignments in order to adapt to varying network
conditions. The design of such algorithms is challenging for several reasons. When
adapting the channel bandwidth (instead of the center-frequency only), the algorithms
need to balance two conflicting goals. On the one hand, they need to minimize interference,
which pushes them to reduce their channel width. On the other hand, they should try to
occupy as much spectrum as possible (for efficiency), which incites them to increase their
channel width. It turns out that this conflict makes the problem of flexible spectrum
allocation significantly different from the more “classic” channel-assignment problem,
where only the center frequency needs to be chosen and which can, for instance, be solved
by variations of graph-coloring algorithms. In fact, how to balance these two goals is
not clear a priori as, in addition, an efficient solution should depend on the number of

2In fact, recent physical layers reach transmission speeds that are close to information-theoretic upper
bounds. As a result, it currently appears difficult to keep increasing raw transmission speeds, which
makes the design of efficient spectrum-assignment schemes an attractive avenue to keep improving the
performance of 802.11 networks.
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interfering devices and their respective traffic loads. An additional major challenge comes
from the fact that Wi-Fi devices are typically deployed in a chaotic and disorganized
fashion by different individuals and administrative entities. These devices often do not
have access to a complete view of the network, and there is no controller with a centralized
knowledge that can make spectrum allocation decisions for them. Therefore, even though
flexible algorithms should tend to require more knowledge and continuous updates (e.g.,
about the traffic loads of surrounding networks), we target only distributed algorithms
that do not require centralized computation.

In the remainder of this introductory chapter, we first present more precisely the
spectrum allocation problem. We then provide an outline of the dissertation and briefly
mention the main contribution of each chapter. Finally, we compare our different
approaches and describe the different points in the design space explored in each of the
following chapters.

1.1 The Spectrum-Allocation Problem

Wi-Fi devices have the ability to operate using different channels, which correspond to
different chunks of the total available spectrum. Currently, the total available spectrum
usually corresponds to one or two of the unlicensed bands, which are the 2.4 GHz ISM and
the 5 GHz U-NII bands. Future Wi-Fi networks might be able to operate in white spaces,
which consist essentially in UHF TV bands that are typically licensed, but might be left
vacant (and available for utilization) by their incumbents (see e.g., [NIK12|). The main
challenge for exploiting white spaces consists in designing systems that are able to use
the spectrum in an opportunistic manner, in order to avoid interfering with incumbents
(which are essentially TV transmitters and wireless microphones). A substantial amount
of research has been dedicated to this problem and, in particular, avoiding interference
with incumbents has been the main focus of several years of research on cognitive radios
(see e.g., [WL11] for a survey). In this dissertation, we do not study this problem, and
we do not attempt to determine the boundaries of the total available spectrum. Instead,
we assume that these boundaries are known and determined by an exogenous process. In
practice, this means that the total available spectrum is fixed for networks that operate
using only unlicensed bands, and it could be variable for future wireless networks that also
exploit white spaces. This is mainly a technicality, and in this thesis we focus on finding
efficient algorithms for organizing the spectrum usage of secondary users, assuming that
the total available spectrum is fixed. We note, however, that all our algorithms can be
easily extended to the case where the total available spectrum varies over time (even if
the nodes do not have a consistent view of the boundaries of the spectral bands).

The channels are determined by their center-frequency and their bandwidth, which
we also call channel width. For the older 802.11b/g/a standards, the channel width is
fixed and set to 20 MHz. In Figure 1.3, we represent the available 20 MHz channels in
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‘ 2417 ‘ 2427 ‘ 2437 ‘ 2447 ‘ 2457 ‘ frequency [MHz]
2412 2422 2432 2442 2452 2462

Figure 1.3 — Schematic view of the 11 IEEE 802.11 fixed-width channels in the 2.4 GHz
ISM band. The inter-channel separation is 5 MHz and each channel is 20 MHz wide.

the 2.4 GHz band. In this band, the separation between the center frequencies of each
channel is only 5 MHz, and so some channels overlap with each other, as shown by a gray
area in the figure. The 5 GHz band provides several channels between 5.17 GHz and
5.825 GHz3. In contrast to the 2.4 GHz band, all the channels in the 5 GHz band are
separated by at least 20 MHz, so that channels using a width of no more than 20 MHz
do not overlap.

The newer 802.11n and 802.11ac standards can use a variable channel width. In
practice, the different widths are obtained by bonding several sub-channels together.
802.11n can operate on the 2.4 or 5 GHz bands, and use the (legacy) 20 MHz bandwidth,
as well as a 40 MHz bandwidth, which is obtained by bonding two 20 MHz channels
together. 802.11ac operates only in the 5 GHz band, and it can use widths of 20 MHz,
40 MHz (2 x 20 MHz), 80 MHz (2 x 40 MHz) and 160 MHz (2 x 80 MHz). Note that
160 MHz is large compared to the spectrum available in the 5 GHz band. In fact, in most
of Europe and North America, there is currently only one contiguous 160 MHz band
available in the 5.17-5.33 GHz range. An immediate consequence is that two neighboring
networks currently operating on a contiguous band of 160 MHz must share the same
spectrum. In addition to the variable bandwidth capabilities of 802.11n and 802.11ac, let
us mention that it is possible to configure some 802.11g/a wireless cards to use non-legacy
bandwidths of 5, 10 and 40 MHz (in addition to 20 MHz — see [CMM™08] and the
Appendix). We will use such configurations to test the algorithm presented in Chapter 2.

1.1.1 Interference versus Capacity

Let us now explain how spectrum assignment affects both interference and capacity, and
how these two metrics can be used to build two qualitative optimization objectives that
will guide our design of spectrum assignment strategies.

Interference can occur when two 802.11 transmitters use overlapping parts of the
spectrum at the same time. In this case, one (or both) of the receivers might be unable
to filter out the signal produced by the other (unintended) transmitter. If the interfering

3These channels are spread over non-contiguous bands and the exact number of available channels
depends on local regulations. In Switzerland, there is a total of 23 different 20 MHz channels in the
5 GHz band at the time of writing.
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signal is strong enough, it might prevent the receiver from correctly demodulating some of
the symbols. In turn, if too many symbols are lost (more than what the error correcting
code can handle), there is a collision and the frame is lost. It has been empirically shown
in [MSBAO6] that the actual amount of interference (measured in terms of throughput)
depends on the amount of spectrum overlap. This is intuitive, as the amount of overlap
determines the amount of interfering power and the likelihood of corrupting symbols.
Therefore, everything else being equal, partial spectrum overlap is more desirable than
full overlap. In practice, however, it is difficult to know a priori what configuration
performs best. In particular, partial spectrum overlap can still result in situations where
the amount of received power is high enough to trigger carrier-sensing at neighboring
transmitters, and thus where CSMA /CA shares the transmission opportunities in the time
domain exactly as if the the concurrent transmitters were operating on the same band
with full overlap. Yet, in general, although performance for various overlap configurations
is difficult to predict, it benefits from the minimization — or, to an even larger extent, the
complete avoidance — of spectrum overlap?. Based on these considerations, we can state
the first qualitative objective of spectrum assignment.

First objective of spectrum assignment (interference avoidance):
Neighboring networks should use configurations that minimize spectrum overlap.

This first objective is intuitive, and it is the primary optimization objective followed by all
“classic” channel-allocation strategies (see e.g., [MBB1T06, MSAT06, AJSS05, LCBM12,
KBCT07]) as well as, to some extent, by the “auto-channel” mechanisms of many off-the-
shelf access points. However, when the devices have the ability to select their channel width
(and not only their channel center-frequency), this first objective cannot be considered in
isolation. In this case, it is necessary to consider the potential capacity gains offered by
various spectrum configurations.

In general, for networks that are not subject to interference, the effective capacity (i.e.,
the achievable throughput) increases with the channel width. For 802.11n and 802.11ac,
which use physical layers based on OFDM, this is because the subcarriers consume a fixed
bandwidth, and hence the total number of subcarriers increases with the total bandwidth.
More generally, the increase of capacity with bandwidth is consistent with Shannon’s
formula [Sha48|; if we write B for the bandwidth, then the information-theoretic capacity

4In practice, the lowpass filters used to shape the baseband signals at the transmitters are not perfect,
which results in non-ideal spectrum masks (the channels in Figure 1.3 are represented in a schematic
way). Usually, this means that there is some amount of power leaking onto the adjacent channels (i.e., the
channels beyond the nominal bandwidth). This phenomenon is known as adjacent-channel interference.
The 802.11 standard [IEE12] imposes constraints on the effective spectrum masks, so that the attenuation
is relatively strong (at least about 20dB) outside of the channel boundaries (see Figure A.2 in the
Appendix for an example), and adjacent channel interference is limited. Nevertheless, it is helpful to
know that adjacent channels can overlap and create some interference.
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1.1. The Spectrum-Allocation Problem

C obtained on a link subject to white-noise interference is given (in bps) by

C = Blog, <1+P“‘>, (1.1)
No
where P,y is the power received from the transmitter and Ny is the noise power (hence
Px/Ny denotes the SNR at the receiver). Therefore, in regimes where the SNR is
approximately constant with the bandwidth, the information-theoretic capacity increases
approximately linearly with the bandwidth. To be more precise, however, we should
note that the effective capacity grows in fact sub-linearly with the bandwidth for two
reasons [CMMT08]. First, for a fixed transmit power, small bandwidths pack more power
per unit-Hertz than larger bandwidths, which increases the SNR. Equivalently, this can be
seen as an effect of the fact that Ny is increasing with B in expression (1.1). Second, for
802.11 devices, the time-domain overheads due to the backoff mechanism (along with other
time-domain overheads — see Chapter 5) become proportionally more important when
the physical rates increase, which penalizes the efficiency of 802.11 networks operating
with larger bandwidths. Nevertheless, for devices that are not subject to interference
and that have a reasonably high SNR, it is beneficial for performance to use a larger
channel width [CMM™08]. We can thus state the second qualitative objective of spectrum

assignment.

Second objective of spectrum assignment (capacity maximization):
Wi-Fi devices should, in general, use as much spectrum as possible.

It is clear that the two above objectives are in contradiction with each other. The first
objective is easier to satisfy if the stations use small channel widths, but such allocations
do not satisfy the second objective. Throughout this thesis, we propose different ways to
balance this “interference versus capacity” tradeoff. In Chapter 2, we propose an algorithm
that optimizes an objective function that is an explicit formulation of this tradeoff. In
Chapters 3 and 4, we propose a way to model the intricate performance patterns of
interfering networks, in order to find wutility-optimal spectrum allocations, which optimally
balance this tradeoff. Finally, in Chapter 5, we again consider this tradeoff explicitly, but
at the packet-scheduling layer.

1.1.2 Flexible Spectrum Allocation

Because interference between 802.11 networks is caused by packet transmissions, it is clear
that the proportion of time during which a given network interferes with (or experiences
interference from) its neighbors depends on the traffic loads on each of these networks.
Therefore, any ideal balance between the two qualitative objectives stated in the previous
section should be a function of the current traffic conditions of neighboring networks. For
example, it is clear that a network that is surrounded only by inactive neighbors can use

7
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as much spectrum as desired, in which case interference avoidance does not matter and
only the second objective (of capacity maximization) is relevant. Obviously, the same
consideration also holds for isolated networks with no neighbors. In contrast, for networks
operating with active neighbors (e.g., in dense urban environments), the first objective
(of interference avoidance) needs to be given more weight. In fact, in this case, the second
objective (of capacity maximization) is less likely to be useful as an optimization objective,
as in dense environments the spectrum is likely to be crowded, and therefore its usage
often does not need to be increased.

Notably, traffic loads, client associations and activity levels vary over time. Networks
can have several clients who join and leave (typically at timescales of minutes to hours),
and each of these clients might be idle or produce different traffic patterns (varying at
timescales as low as tens or hundreds of milliseconds). Therefore, a desirable feature (and
a design goal) of spectrum-assignment strategies is the ability to continuously re-evaluate
and adapt spectrum consumption over time. In particular, in this thesis, we do not target
algorithms that “freeze” spectrum assignments once and for all after some convergence
criterion has been met. Instead, all the proposed algorithms provide some convergence
guarantees when the traffic is in steady-state conditions, but these guarantees describe
the average fraction of time spent in desirable configurations, and the algorithms always
continuously adapt their spectrum usage. In the following, we refer to the flexibility
of spectrum assignment schemes as (i) the ability to adapt the amount of spectrum
consumed by each network, and (ii) the fact that spectrum allocations are continuously
adapted over time (in reaction to surrounding conditions).

1.2 Outline and Contributions

We give an overview of the outline of the thesis and summarize the main contribution of
each chapter.

e Chapter 2: We propose SAW (Spectrum Assignment for WLANS), an algorithm
for the joint allocation of center frequencies and bandwidths of 802.11 networks.
SAW is tailored for home networks; it is completely decentralized and produces
no control traffic. Yet, we show that it converges to configurations that solve a
network-wide explicit version of the interference-versus-capacity tradeoff presented
in Section 1.1.1. Notably, we observe that it is possible to use a fixed optimization
objective to find efficient solutions to the interference/capacity tradeoff, irrespective
of the network spatial density. SAW constantly evaluates the spectrum used by
each AP at random time intervals (every few minutes on average). We implement
it on a 802.11 testbed (the details of which will be presented in the appendix).
Main contribution: To the best of our knowledge, SAW is the first algorithm for
the joint allocation of center frequency and bandwidth, which is decentralized and
requires no control traffic.



1.2. Outline and Contributions

e Chapter 3: We take a step back from the pure spectrum-assignment problem,
and consider the task of predicting the performance achievable by interfering
networks when operating with arbitrary traffic loads, channel qualities, spectrum
configurations and transmit powers. Predicting performance in such arbitrary
situations is challenging due to complex interactions at the MAC and PHY layers.
We show that, using an initial measurement campaign performed in a controlled
fashion on real networks, it is possible to use supervised machine-learning techniques
to build implicit performance models. When trained properly, these models can
capture many complex dependencies and outperform existing wireless models (e.g.,
SINR-based models) that are also seeded with measurements. Importantly, we
observe that these models still perform reasonably well when predicting performance
in conditions that are drastically different from those that prevail during the initial
measurement campaign.

Main contribution: We show that, as far as performance prediction is concerned,
models coming from the machine-learning domain can outperform specialized

wireless models fitted to measurements.

e Chapter 4: We formulate a utility-optimal algorithm for the joint allocation of

center frequency, bandwidth and transmit power. Converging to utility-optimal
configurations requires a sophisticated performance model in order to carefully select
configurations. For this reason, we take the approach proposed in Chapter 3 and use
models obtained using machine learning for predicting the performance achievable
in the various configurations. Contrary to the algorithm of Chapter 2, the algorithm
of Chapter 4 is distributed, but not fully decentralized. It relies on the exchange of
control messages among immediate neighbors. These messages are required for the
algorithm to be utility-optimal; they are used by the APs to predict performance
and quantify the effect (in terms of utility) of each configuration on neighboring
networks. Similarly to the algorithm of Chapter 2, this algorithm re-evaluates
spectral configurations at random intervals (also every few minutes on average).
We implement it on our testbed and show that it is possible to find spectral and
transmit-power configurations that meet precise optimization objectives (in terms
of performance and fairness), as determined by utility functions.
Main contribution: We propose the first utility-optimal algorithm for the joint
allocation of center frequency, bandwidth and transmit power. To the best of
our knowledge, we provide the first observation that utility-driven optimization of
spectrum usage can be employed in practice, on a real network, to explicitly tune a
balance between throughput and fairness.

e Chapter 5: We propose TF-CSMA /CA, an extension of the backoff mechanism of
802.11 to the frequency domain. With TF-CSMA /CA, when a station is involved
in a collision, it performs backoff in both time and frequency domains. Backing
off also in the frequency domain enables the transmitters to amortize the severe
overheads created by recent 802.11 PHY layers, and to be much more aggressive in

9



Chapter 1. Introduction

time domain. TF-CSMA /CA is an algorithm targeting new systems that implement
flexible channelization, whereby wireless stations adapt their spectrum on a per-
frame basis. Contrary to existing channelization schemes, TF-CSMA /CA is entirely
decentralized and only reacts to packet collisions, successful transmissions and
carrier sensing. Although it uses only transmission outcomes as implicit signals,
we show that TF-CSMA /CA provides self-organization in the spectral domain,
and that interfering links spend the majority of the time in non-interfering bands.
Overall, relying only on transmission outcomes provides a simple and effective way
to assign spectrum to stations directly at the MAC layer, in a way that departs from
the usual “reservation-based” spectrum usage, but that is instead determined by
instantaneous traffic loads, just like CSMA/CA in the time domain. We implement
TF-CSMA/CA in a packet-level simulator and observe drastic gains compared to
perfect time-domain scheduling (i.e., compared to perfect TDMA schedules), and
performance similar to what can be obtained by 802.11 operating with optimal (but
monolithic) spectrum allocation.

Main contribution: To the best of our knowledge, TF-CSMA /CA is the first
random-access mechanism performing backoff in both time and frequency domains.
It is the first scheduling algorithm for flexible channelization that does not require
any form of explicit signaling, synchronization, spectrum scanning or central control.

1.3 Comparison of Proposed Spectrum-Assignment Strate-
gies

There is no single best way of designing a spectrum-allocation scheme, and the algorithms
presented in this thesis explore different points in the space of possible tradeoffs. In
this section, we divide the design space into four aspects that we think are important:
decentralization (i.e., the ability of the algorithms to act in a distributed way), flexibility
(i.e., the ability to adapt the amount of consumed spectrum and react on short timescales),
practicality with today’s hardware, and strength of the optimality guarantees. We
illustrate the position occupied by each algorithm in a schematic way in Figure 1.4 (where
the strength of the optimality guarantees is represented by a level of gray), and in the
remainder of this section, we explain the corresponding design decisions.

1.3.1 Decentralization

In order to find efficient spectrum assignments, each access point needs a way to frequently
learn about the state and condition of its neighbors before taking a potential decision
for itself. In this thesis, we propose three different ways of achieving this goal®. In

SWe always assume that the wireless stations use only one wireless interface. Using an additional
interface (e.g., dedicated for control traffic) could help spectrum-assignment schemes to acquire information
about neighboring networks, but most off-the-shelf devices have only one interface. Furthermore, having
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practicality with today’s hardware

SAW (Chapter 2)
[

Utility-optimal

(Chapters 3 & 4)

flexibility

TF-CSMA,/CA
(Chapter 5)

decentralization

Figure 1.4 — Representation of the different points in the design space explored by
each of the proposed spectrum assignment strategies. The strength of the optimality
guarantees is represented by a level of gray.

Chapter 2, we propose and implement a micro-sensing technique, whereby the access
points spend short durations out of their operating bands. The durations are kept short
in order not to interrupt traffic with the access point’s clients (who do not switch and
still use the main operating band), but they are sufficiently long in order to estimate
the activity levels of neighboring networks on different spectrum bands and take efficient
spectrum decisions without requiring any form of control traffic. In Chapter 4, we allow
some communication between neighboring access points to exchange control information.
Such control information enables the access points to learn the exact configuration of
each of their neighbors and to predict the capacity achievable on each of their own links
in each possible configuration. This knowledge enables them to weigh the effect that
each spectrum configuration could have on each neighbor. In fact, although this form
of collaboration introduces some extra complexity, it enables us to implement richer
optimization criteria and design an algorithm where the local decisions taken by each
access point maximize a network-wide sum of arbitrary utility functions. In order to make
it practical, we propose and implement a neighbor-discovery mechanism, whereby the
access points periodically broadcast their public IP address, and subsequently use their
wired backbone connection for exchanging control traffic with their neighbors without
creating overhead on the wireless medium. Finally, with the algorithm proposed in
Chapter 5, the spectrum decisions are taken on a per-frame basis by each transmitter.
In this case, the stations learn implicitly about their neighbors through the outcomes

access to an additional interface changes the nature of the problem (as it could, in some cases, increase
the overall achievable capacity if the additional interface is itself used for data transmission).
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of packet transmissions (i.e., the successes and collisions), as well as carrier sensing in
their current operating band. As a result, this last scheme is the “most decentralized” of
all, as the stations do not even use any explicit knowledge of the spectrum used by their
neighbors. This is in contrast to the algorithm of Chapter 2, which is decentralized (in
the sense that it requires no control traffic), but where the access points need to acquire
some explicit knowledge of the spectrum consumed by their neighbors. Overall, the fully
decentralized settings of Chapters 2 and 5 are suitable for chaotic network deployments
by different administrative entities, whereas the collaborative utility-optimal setting of
Chapter 4 is suitable for enterprise networks.

1.3.2 Flexibility

All of the algorithms presented in this thesis adapt dynamically the amount of spectrum
consumed by each station, and all of them respond to the interference-versus-capacity
tradeoff described earlier. Despite this similarity, the algorithms differ on the timescales
at which they operate. With the algorithms of Chapters 2 and 4, each access point is
in charge of choosing the spectral configuration for its own network. In this setting,
changing the operating band incurs some overhead; all the clients have to be notified,
and the access point has to learn about the state of neighboring networks. For this
reason, with these algorithms, every access point re-evaluates its configuration at random
time intervals, every few minutes on average. In contrast, with the algorithm proposed
in Chapter 5, acquiring information about neighboring configurations is inexpensive (it
comes implicitly from transmission outcomes and carrier sensing), and the spectrum
can be adapted for every frame. As a result, this algorithm operates at a much faster
timescale that is determined by the speed at which packets are scheduled (and is typically
of the order of the millisecond). In this sense, this algorithm is the most flexible of all as
it can nearly instantly adapt the spectrum consumption to varying network conditions.

1.3.3 Practicality

In order for communication to take place, the transmitter and the receiver have to know
the frequency band used for transmission. With the algorithms of Chapters 2 and 4, the
access points use dedicated signaling in order to notify the clients when the operating
spectrum band changes®. In this sense, these algorithms are practical and implementable
with today’s hardware; we are able to evaluate them using testbed experiments. In
contrast, with the algorithm of Chapter 5, the transmitter has to indicate the spectrum
band used by each frame in its physical layer preamble. This has been recently shown
to be feasible on real hardware (see e.g., [CLLT12, YKQ13]), but more time is required
until such functionalities become supported by off-the-shelf hardware. In this thesis,

5Such signaling is required by any spectrum-assignment mechanism in one form or another. In practice,
it could be integrated within addendum of the IEEE standards (e.g., IEEE 802.11h).
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we do not study this practical aspect, but rather focus on the algorithmic challenge of
assigning spectrum at the MAC layer. Due to this constraint, we evaluate the algorithm
of Chapter 5 by using packet-level simulations.

1.3.4 Optimality

Finding optimal spectrum assignments requires solving a complex optimization problem.
The number of possible configurations is combinatorial and, in the simplest case where
there is only one channel width and where the channel and traffic conditions are homoge-
neous across all network nodes, optimizing spectrum assignment solves an NP-complete
graph-coloring problem. Due to this complexity, we resort to iterative search techniques
in order to design practical algorithms. The challenge, therefore, becomes to design
schemes that provide some self-organization properties, in the sense that the iterative
search procedures converge towards optimal solutions, even though the access points take
local decisions in a decentralized fashion. In this context, the algorithms proposed in
this thesis differ in the strength and generality of the target that they optimize. The
algorithm of Chapter 2 converges to configurations that are arbitrarily close to the optimal
solution of a cost minimization problem, where the cost function explicitly accounts for
both interference and capacity. In contrast, the algorithm of Chapter 4 provides the
most general optimality guarantees; it converges arbitrarily close to configurations that
maximize the sum of arbitrary wutility functions of the achieved throughput. This setting
enables the algorithm to find configurations that optimize any arbitrary balance between,
for instance, performance and fairness. Finally, contrary to the first two algorithms, the
algorithm of Chapter 5 does not provide network-wide convergence guarantees. However,
we show that it is also self-organizing, in the sense that neighboring stations (belonging
to the same contention domain) spend an arbitrarily large fraction of their time in states
without interference (when such states exist).
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Decentralized Spectrum Assignment
for WLANSs

2.1 Introduction

In this chapter, we present SAW (Spectrum Assignment for WLANS), our first algorithm
for spectrum assignment. SAW takes a direct approach for finding efficient solutions to
the “interference versus capacity” tradeoff presented in Section 1.1.1. In particular, SAW
is a decentralized algorithm that conciliates an efficient global packing of spectrum chunks
(which corresponds to minimizing network-wide interference) with the local benefits of
using appropriate bandwidths (which typically corresponds to maximizing the spectrum
usage of each WLAN).

SAW is a practical algorithm for online and distributed center-frequency and bandwidth
assignment, which targets home networks, i.e., residential WLANs with access points
(APs) deployed in a chaotic fashion by individuals or different administrative entities.
It runs at the AP of a WLAN and relies exclusively on inter-neighbor measurements,
without generating additional traffic. Furthermore, it is transparent and operates while
the network is up and running. Despite these characteristics, it is self-organizing and
provably converges towards optimal spectrum allocations, in a sense that we will define
later. Finally, it improves the performance, even when only a subset of the interfering
WLANS use it (therefore providing incentives for incremental deployment), or when some

access points behave selfishly.

We organize the remainder of this chapter as follows. We start by describing some
notation and a model for interacting WLANs in Section 2.2. We then describe the
operation of SAW, as well as its convergence properties in Section 2.3. Next, we evaluate
the performance of the algorithm on large ecosystems of interfering WLANSs by using
simulations in Section 2.4. We complement this performance evaluation by testbed
experiments in Section 2.5. We then discuss relevant related work in Section 2.6 and,
finally, we close the chapter with a summary in Section 2.7.
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2.2 A Model for WLAN Interactions

As explained in the introduction, the spectrum occupied by neighboring WLANs affect
performance through interference. Therefore, in order to quantify this performance effect,
SAW uses an interference metric. In order to formally define this metric, we need to
define what composes neighborhood relationships among WLANs. This is achieved in
two steps; we first build a link-centric model in Section 2.2.1, and then extend it to the
specifics of WLANSs, with APs and clients, in Section 2.2.2.

2.2.1 Link-Centric Model and Neighborhood System

Let £ define a set of links, F a finite set of center frequencies and B a finite set of channel
bandwidths. In the following, we use the term band to denote a particular combination
of channel frequency and bandwidth. Each link [ € £ comprises two nodes, acting as a
transmitter or receiver for this link. As we assume that each node uses only one wireless
interface, the transmitter and receiver of a given link must use the same band in order
to communicate!. For a link I, f; € F denotes the center-frequency used by link I and
b; denotes the bandwidth used by link . Finally, for a link I, y; € [0,1] denotes the
average fraction of time during which a node occupies the medium (which we also call
the airtime ratio of ). In practice, y; depends on the 802.11 CSMA /CA time-sharing
mechanism, the physical rates used on link /, and b; (because transmission delays are
inversely proportional to the channel width).

For any pair of links [, k, we say that [ and k are mutual neighbors (and interfere) if
there exists a configuration (f, by, fx, bx) such that two of the four nodes composing [ and
k belong to different links and receive frames from each other. Then, we write A for the
set of neighbors of link [. By construction, the neighborhood relationship is symmetric,
ie., k€ Nj & | € Ni. Note that this model does not imply symmetric interference levels:
as specified later in Section 2.2.3, two neighbors can mutually interfere with a different
extent (e.g., if they are subject to different traffic loads). With this model, a link is
considered as a neighbor if its transmitter is in the communication range of any node
of another link. In this sense, it captures both exposed and hidden terminal situations.
However, it does not capture interferers that are not within communication range, as it
relies on the ability of the interferers to decode each other’s frames. Nevertheless, we
use this model as it is the one that fits best the operation of SAW in practice (in our
implementation, the APs need to decode their neighbors’ frames in order to detect them).
Note that detecting interferers outside the communication radius in a distributed setting
is an interesting problem on its own (see e.g. [MRWZ06])2.

!Note that a receiver could decode a signal sent with a narrower width, but this would require special
non-commodity hardware. In this Chapter, we target an algorithm that runs on off-the-shelf hardware.

2The algorithm proposed in Chapter 5 also goes in this direction, as it can react without decoding
any neighboring frames
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2.2.2 From Link to WLANSs: BSS-Centric Model

We now tailor our model to co-existing and possibly interfering BSSs®. A BSS is a set of
nodes, where one node is an AP and those remaining are clients. Compared to isolated
links, the main difference is that all traffic goes either to or from the AP. Therefore, all
nodes of a BSS must use the same band. In this chapter, we assume that the AP is in
charge of choosing the band for its BSS.

To account for this new constraint, we extend the neighborhood system defined for
links, and we define a neighborhood system for BSSs. Let A be a set of N BSSs. For
a BSS A € A, a link [ belongs to A (and we write [ € A) if both nodes of [ belong
to A. In this case, one node of [ is of course the AP of A. Then, two BSSs A and
B are neighbors if there exist two links [ € A and k € B such that [ € Nj. If A and
B are neighbors, we write A € Ng. The symmetry of the link neighborhoods implies
A e Ng & B € Ny. In addition, we write fy € F and by € B for the center frequency
and channel bandwidth used by the BSS A, respectively. We denote by F € FV and
B € BY the center frequencies and the bandwidths used by the N BSSs, respectively.

2.2.3 Interference Metric

We now define the metric used by SAW to quantify the amount of interference between
any two links. For two links [ and k, let I;(k) denote the link-interference created by k
on [. In addition, let IF (I, k) denote the interference factor (see [MSBAO6]). This factor
describes the amount of overlap between the two spectrum masks used on links [ and k.
We can now define I;(k) as

H(k) = {uk-IF(l,k) if k€ N, 21)

0 otherwise,

with oo
IPUR) = [ SUOSI - |- e,
—00

where Si is the transmit mask of link k£, and S; is the mask used on link I. The
802.11 standard defines the characteristics of masks [IEE12]. As already mentioned
in introduction, they change with channel bandwidth: for a given transmit power, the
emitted power per unit Hertz increases as the channel bandwidth decreases (see [CMMT08]
for a detailed explanation). Note that [;(k) is not equal to Ix() in general.

Equation (2.1) requires some discussion. With partially overlapping channels, I F(I, k)
accurately capture the interference between [ and & (this has been empirically observed

3We use the term BSS (Basic Service Set) to designate WLANSs here, as this is the usual 802.11
nomenclature. Note that the concepts presented here apply to any kind of cell architecture composed of
a base station and some clients
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Figure 2.1 — The interference I;(k) produced by link & on link [ (Eq. (2.1)) can be seen
as the average sum of the volumes spanned by the channel overlaps over time. The time
intervals without volume correspond to the intervals during which link & is idle.

in [MSBAOG6|, and later been confirmed for 802.11n with channel bonding [SRYBO0S|). In
Equation (2.1), we augment this interference factor and multiply it by the fraction of time
a given interfering link is active (uy). This naturally extends the notion of interference to
both the spectral and temporal domains (see Figure 2.1), and it accounts for the fact that
a link is more likely to cause interference if its airtime is high. This is important, as it
indirectly accounts for the traffic load on the different links. We also introduce it as a way
to account for the difference in airtime consumption at different channel widths. Note
that a seemingly reasonable extension could be to modulate I;(k) by the power that link
[ receives from an interfering neighbor. However, as we will illustrate in Chapter 3, the
transmit and receive powers are very intricate indicators of performance (or interference)
in practice?, and we do not use them here.

Finally, let T4(B) be the BSS interference that a BSS A experiences from a BSS
B € N 4. Using the link-interference, we have

14(B) = 5" 1(h). (2.2)

leA keB

Again, in general I4(B) # Ip(A).

2.3 SAW Algorithm

Recall that an efficient joint allocation of center frequencies and bandwidths needs to
balance a minimization of interference with an appropriate spectrum consumption. In
this chapter, we formulate the center-frequency and bandwidth allocation task as a
network-wide cost minimization problem, where the cost is the global sum of the BSS
interference, plus a local penalty that each BSS attributes to the exploitation of a given
bandwidth. As will become clear later, this formulation conveniently exhibits optimal

4In particular, it could be the case that the throughput achievable on a given link is an increasing
function of the transmit power of an interfering transmitter (see Section 3.2 for a detailed example)
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2.3. SAW Algorithm

Algorithm 1: SAW algorithm at BSS A

Initialization:

Setup an exponential timer of mean wake-up time 1/\
Set the temperature T' > 0

Pick a random configuration (f4,b4) € {F x B}

When the timer fires:

Pick a random configuration (fuew, bnew) € {F X B}

7 Measure K 4 := D pcpr, (1a(B) + I5(A)) + costa(ba), when A does use the
configuration (fa,b4)

8 Measure Kj 4 1= > pepr, (1a(B) + I5(A)) + cost a(bnew), if A were to use the

configuration (fnew, bnew)

B W N =

[<2 I

9 Compute
By = KA IT S K 4 > Kia,
" 1 if K;]"A < lCz',A~

10 Set (fa,b4) = (fnew, bnew) With probability 3;;
11 Reschedule the timer

solutions that can be well approximated by the steady state of a Markov chain, whose
transitions are precisely determined by our algorithm. Formally, let the energy of the
network be

EF,B):=> Y Ia(B)+ Y costa(ba), (2.3)

Ae ABeNy AcA

where cost 4(ba) quantifies the penalty that BSS A attributes to using bandwidth b4. In
most cases, it is advantageous for the APs to choose a penalty function that favors larger
bandwidths®. This formulation is similar to the energy of a magnetic system in statistical
physics, where the local spin interactions correspond to the interference and an external
field favors “better” bandwidths. The optimization problem is then

minimize £(F,B) over F,B¢c {F x B}". (2.4)

SAW is described in Algorithm 1. The algorithm runs at the AP of each BSS. In the next
section, we show that with SAW running at each AP, the spectrum allocation converges
towards the minimum of Problem (2.4). The algorithm uses two real parameters, the
average wake-up time 1/\ and a temperature 7', whose role is explained in Section 2.3.1.
At the AP of a BSS A, SAW is executed repeatedly, at random time intervals. During
an execution, the AP randomly samples a center frequency and a channel bandwidth

®Note that an AP can also decide to favor narrow bandwidths if some of its links have very poor SNRs
(see Section 1.1.1 of the Introduction). In practice however, we recommend to use a penalty function
favoring larger bandwidths as, everything else being equal, narrow bandwidths rarely outperform wide
bandwidths [CMM™08]. Furthermore, poor SNRs can be compensated by auto-rate mechanisms, which
select more robust modulations on the affected links.
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(frews bnew). The AP measures K; 4 (line 8), the local sum of (a) the interference currently
experienced by the BSS A, (b) the interference caused by the BSS A on its neighbors
with the current band (f4,b4), and (c) the penalty that A attributes to using b4. It then
measures K; o (line 9), the same sum if the BSS A were to use (fnew, bnew) instead. We
explain how to measure K; 4 and K; 4 in Section 2.3.2, and we give more information
on the influence of the function cost4(b4) in Section 2.4.3. If the new band (fhew, bnew)
sampled by the AP appears better than (f4,b4) (in the sense of Eq. (2.3)), it is accepted
and the BSS A switches to this new band. If it is worse, a chance is left to this band, and
it is accepted with a non-zero probability by the AP. The acceptance probability depends
on how bad the band is: bands that appear very bad are less likely to be accepted by
the AP. Having a non-zero probability of accepting worse bands is necessary in order to
ensure that the algorithm does not remain stuck in a local minimum of Problem (2.4).

SAW is a Metropolis sampler for the channel center frequency and bandwidth. The
main advantage of this sampling strategy is that it only needs to assess two configurations
at a time. This is important, because SAW operates in a fully decentralized way and
assessing a larger number of bands would be prohibitive, as it would require more
measurements. In contrast, in Chapter 4, we use a different strategy based on Gibbs
sampling. Gibbs sampling considers all the |F x B| potential configurations at each
iteration, which can potentially improve convergence speed. However, it is only feasible in
a setting where neighboring APs can collaborate (as in Chapter 4) hence do not need to
measure all the combinations of center frequencies and bandwidths used by neighboring
BSSs at each iteration. SAW retains similar asymptotic convergence properties (and
requires very few iterations to converge in practice), but the number of measurements that
are required in each time step is scalable with respect to the set of possible configurations,
which enables the implementation to fully decentralized.

2.3.1 Convergence Analysis

We now provide an analytical characterization of the convergence of the algorithm. Let us
discretize time. A time slot is started immediately before any one AP fires its timer®. We
denote by X,, € {F x B} the global state of the network at time slot n. The following
theorem states that the probability distribution taken by X, converges towards a steady
distribution that largely favors the states producing low energies.

Theorem 1. Consider a network where all the BSSs run SAW with a given temperature
T > 0. Then X,, converges in distribution to

o—E60)/T

TFl(T) = Z y

(2.5)

where Z s an appropriate normalizing constant.

SNote that the time slots have variable durations that are only determined by the stochastic sequence
of the timer events.
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Proof. Because of the exponential timers used by the APs, the discrete time process
X, is a Markov chain. We use the classic nomenclature of Metropolis sampling (see for
instance [Bre01], Chapter 7). For any two states 4,5 € {F x B}, we write the transition
probabilities from i to j as p;; = P(X,, = j|Xpn—1 = 1) = ¢;j - ay;. With this notation,
gi; denotes the probability to sample state 7 when the chain is in state ¢, and «;; is
the probability, when in state i, to accept state j if it is sampled. We start by giving
the expressions for ¢;; and a;; when the distributed algorithm is applied, and we then
establish the convergence. In the following, we say that two states 4, j € {F x B} differ
at exactly one BSS A if all the BSSs have the same configuration of center frequency and
bandwidth in states in ¢ and j, except for the BSS A that has a different configuration in
i and j.

Because a time slot starts whenever a timer expires, exactly one AP out of the N APs
wakes up at each time slot. This AP samples uniformly at random one new configuration
in {F x B}. Therefore, for any two states i # j,

1
Qi = qji = ma
if 7 and j differ at exactly one BSS, and ¢;; = ¢;; = 0 otherwise.

We now characterize the acceptance probabilities ;. Observe that given i = (F,B) €
{F x B}, we can rewrite & as

@)= > (Ia(B)+1Ip(A)+ ) costa(ba).

{A,B}CA, A£B AcA

This can in turn be rewritten as a sum over all the cliques C' of the BSS neighborhood

system
(i) =Y V(C),
C
with
I4(B)+1g(A) if C ={A,B} and A € N,
V(C) = { costa(ba) if C = A,
0 otherwise.

Note that this means that £ derives from a potential (see |Bre0l]). For our purpose, it
implies that if we consider any two states i,j € {F x B} that differ at exactly one BSS
A, we have

E(1) = E(j) = Kia — Kja,

where KC; 4, respectively K; 4, are the interference values observed by A at lines 7 and 8
of Algorithm 1, when the network is in state i, respectively in state j. Therefore, we have

a;j; = (B3 = min{l, e(g(i)—g(j))/T}’
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where 3;; is the local acceptance probability used at line 10 of Algorithm 1.

Xy, is ergodic and it is easy to check that m;(T") satisfies the detailed balance equations
mipi; = T;pj; when plugging in the expressions for ¢;; and «;;. Therefore, (2.5) is the
unique stationary distribution of X,,. Also, since the chain is aperiodic, X,, converges in
distribution to (2.5). O

Furthermore, we can use a classic Markov chain argument to show that the convergence
to steady state happens at geometric speed. The following proposition is a direct
consequence of Theorem 3.3 in [Bre01|, Chapter 6, together with the Perron-Frobenius
Theorem for nonnegative matrices.

Proposition 1. Let P = [p;;] be the transition matriz of the Markov chain X, and
i€ {F x B}N an initial state. For all n > 1, we have

2n

hs

dy (6T P" )2 <

)

e

T

where ¢; € {0, 1}|{]:XB}N| s the vector with a 1 at the position of the i-th state and 0’s
elsewhere, dy s the distance in variation and p < 1 is the second largest eigenvalue
modulus of P.

The distribution (2.5) puts “exponentially” more mass on configurations that produce
low global energies, especially if T" is small. Indeed, consider the set of global minima of
problem (2.4)

H:={ic {FxBN:£(i) <&@V je{FxB},

then m;(7T") is maximal on H, and

4 ifieH,
lim 7y (T') = { 1 o
70 0 ifi ¢ H.

(see Example 8.6, Chapter 7, in [Bre01]).

The temperature T represents a trade off between exploration and exploitation. In
particular, a small value of T ensures near asymptotic convergence to the global minima
of problem (2.4). Larger values of T' can be used to introduce more randomness that
help the algorithm to avoid being trapped in a local minimum. However, as we observe
in Section 2.4.2, realistic network topologies convey enough natural randomness so that
T ~ 0 yields the best results in practice. This also implies that the algorithm converges
to global minima of Problem (2.4).
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2.3. SAW Algorithm

2.3.2 Interference Measurements

All the decisions taken by SAW rely on the measurements of K; 4 and Kj 4 at lines 7
and 8 of Algorithm 1. At the AP of BSS A, computing Kj; 4, K 4 requires measuring
the link-interference between links belonging to A and links in neighboring BSSs. If any
neighbor of A uses a band that partially overlaps with A and comprises some links with a
non-zero airtime, it contributes to the interference term. Thus, in order to evaluate KC; 4,
respectively, K; 4, the algorithm needs to measure the link-interference in all the bands
that overlap with (fa,ba), respectively, with ( fnew, bnew). We refer to these measurements
as out-of-band measurements, because to be performed they require tuning to different
bands.

Micro-Sensing

We enable out-of-band measurements to be taken by implementing what we call micro-
sensing operations. After randomly picking a new band, the AP of a BSS A computes the
list of all bands that could potentially interfere with the current band (f4,b4) and the
sampled band (fnew, bnew). By knowing F, B and the spectrum masks defined in [[EE12],
this list is straightforward to obtain. The AP then tunes to each of these bands for a
short amount of time. Then, instead of scanning all of these bands at once, the AP comes
back to the operating band (fa,b4) between each individual scan. The whole procedure
is depicted in Figure 2.2. The amount of time spent in out-of-band sensing must be large
enough for the nodes to have a fair chance of efficiently monitoring the band, and small
enough so as not to disrupt traffic. This duration also depends on the bandwidth of the
configuration currently being scanned, because the time required to send or capture a
packet at a given rate is inversely proportional to the channel bandwidth; therefore, larger
bandwidths can be monitored faster. We denote by t¢,,_s the overall time taken by one
micro-sensing operation. As a micro-sensing operation requires switching back and forth
between the operational and the monitored band, we have

tm—s = 2tswitch + tsensinga (26>

where tgyiten is the time required to tune to the target center-frequency and bandwidth,
and tgensing is the time spent monitoring, which depends on the channel bandwidth. In
our implementation, we set tsensing = 240/b ms, where b is the bandwidth of the band to
monitor in MHz. This duration is long enough to capture packets sent at low rates, but
short enough (below 50 ms) to accommodate delay-sensitive traffic, even when a 5 MHz
band is being sensed.

A trade-off must be found between the amount of sensing and the accuracy of the
interference estimation. As one micro-sensing operation is fast and inexpensive, our
implementation senses each band several times to increase the probability of detecting
potential neighbors, even if they do not transmit back-to-back packets. Even in this case,
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Figure 2.2 — Implementation of out-of-band monitoring with micro-sensing.

the algorithm could miss some neighbors that send only sporadic traffic and occupy little
airtime. Note however that, by definition, these neighbors do not consume a significant
portion of the available capacity, hence missing them is less critical.

During each micro-sensing period, the AP monitors the medium and gathers link
statistics. For each packet that it overhears, the AP records the corresponding band,
a link ID (specifically, the pair of source-destination MAC addresses), and it keeps an
estimation of the airtime ratio of the link by computing the airtime consumed by the
packet. This airtime is computed from the length of the packet, its physical rate, and
from the bandwidth that it occupies

Client-Aware Extension

Up to this point, the measurements are performed at the AP only. This is indeed a
desirable feature, as it does not require client-side modification. In this case however, the
AP could miss hidden nodes that interfere with some of its clients. This problem can
be important in practice, as observed in works proposing centralized channel-assignment
schemes [MBB*06, RMAQO7|. For this reason, and to remain consistent with our link
neighborhood definition of Section 2.2.1, we propose an optional extension of SAW that
performs monitoring at the clients as well. When the timer of an AP fires, this AP
broadcasts a modified beacon that contains the sampled frequency band and a schedule
for the corresponding micro-sensing operations. When the clients receive this beacon,
they schedule the micro-sensing of the bands accordingly. Once they have monitored
all the required bands, the clients wait a small, random amount of time (in order to
avoid inter-client collisions) and send back to the AP all the statistics for the links that
they overheard. This feature mitigates the impact of links that are hidden from the
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Figure 2.3 — Example of a grid composed of 100 cells, each of which contains one AP
and two clients. The interference radius is R = 100m, as shown for one particular AP on
the figure.

APs, but it comes at the price of client-side modifications. We implemented SAW both
with (“client-aware”), and without (“client-agnostic”) client monitoring. We compare the
performance of the two versions in Section 2.5.

2.4 Simulation Results

2.4.1 Simulation Setup

Before giving a detailed evaluation of SAW on an indoor 802.11 testbed in the next
section, we first use simulations in order to investigate its self-organization properties on
large ecosystems of interfering WLANs. To this end, we developed our own simulator in
Python. We do not simulate at the packet level, because this would not scale well to such
large networks. Instead, we use simple models for computing interference and capacity.

We assume Gaussian white noise, so that a link [ benefits from a theoretical capacity
Cy; = by - log(1 4+ SINR;), where SINR; refers to the signal to interference-plus-noise
ratio at the receiver of [. For any two nodes ¢ and j within interference range, we
compute the power received by j from ¢ to be proportional to d(i,j)~“ - IF(i,7), where
d(i,j) is the Euclidean distance between i and j, « is the path loss exponent — that
we take equal to 3 in our simulations — and IF'(i,7) is the corresponding interference
factor [MSBAO06|. Note that this simple formulation for the capacity captures the trade-
off between interference mitigation and the usage of larger bandwidths, through the
logarithmic and pre-logarithmic terms, respectively. Unless otherwise stated, we take
the penalty function to be cost4(ba) = 1/ba for each BSS, where by is the bandwidth in
MHz. Such a function favors wider bandwidths, and we evaluate its effect in Section 2.4.3.
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Unless otherwise stated, we consider a 1000m x 1000m square grid, divided in 100
square cells. Each cell is occupied by one BSS, which is composed of one AP and two
clients. The AP and the clients are placed uniformly at random within their cell. The
interference radius is R = 100m (see Figure 2.3 for an example). The results are insensitive
to the scale of the units, and this setting can, for instance, be thought of as a simple
model for residential WLANSs, where each cell corresponds to an apartment in a building.
We simulate downlink traffic. The APs transmit 100% of the time and the clients are
idle. We consider a 2.4 GHz scenario, with eleven center frequencies separated by 5 MHz,
and four possible channel bandwidths (5, 10, 20 and 40 MHz). At initialization, each
BSS picks a random channel and uses the largest width.

We evaluate three metrics: (1) The total amount of interference in the network
(specifically, the first term of the energy function £ given by Eq. (2.3)); (2) the sum of
capacities of links in the network; and (3) the Jain fairness index of the capacities
experienced by each BSS. The Jain fairness index is given by

(ZAEA CA)2
NZAGA (CA)27

with C'4 denoting the sum of the link capacities of BSS A. We show the median values

over 50 simulation runs, and the error bars on the plots are the 95% confidence intervals
for the median.

2.4.2 Influence of the Temperature T

The temperature T represents a trade-off between the likelihood of remaining stuck in a
local optimum and the asymptotic efficiency of SAW (see Section 2.3.1). To understand
this trade-off, we perform simulations with various temperatures spanning six orders of
magnitude. Each simulation runs until each AP has performed on average 30 iterations of
SAW. In order to conveniently display the three metrics on a common plot, we normalize
the capacity and the interference by their largest values. Figure 2.4 shows that SAW
performs better, with respect to all the metrics, when T is small. In practice, this implies
that the risk of remaining trapped in a local optimum is very low and small values of
T can be used (specifically, it implies that greedy policies perform well on this kind of
problems). As such values also ensure the best asymptotic performance of SAW, we use
T = 0.1 in the following.

2.4.3 Capacity versus Interference

In this section, we explore the influence of the weight that each BSS puts on its local penalty
function. We consider a scenario where each BSS A uses the function cost4(ba) = ¢/ba,
where c¢ is a weighting parameter. The BSSs can use different cost functions, according to
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Figure 2.4 — Capacity, fairness and interference as functions of the temperature 7.

the local benefit of each bandwidth. However, we study this particular function in detail
because it decreases with the bandwidth b4, and therefore exhibits well the inherent
conflict between interference mitigation and the maximization of theoretical capacity. It
is also a practical function that the BSSs can use whenever using a larger bandwidth
would give them a better throughput. As already mentioned, this is often the case in
practice, when the links have sufficiently good SNRs [CMM™*08]. We this cost function,
the energy function given by Equation (2.3) becomes

EF,B)=)_ Y Ia(B)+c- )Y 1/ba.

AEA BEN 4 AcA

We show the influence of ¢ on our three performance metrics in Figure 2.5. When ¢
is zero, no weight is given to the local preferences of the BSSs, and the scheme targets
only global interference minimization. In this case, it indeed finds interference-free
configurations in a decentralized way. This setting is well suited for fixed-width channel
allocation, but it is not appropriate for varying bandwidths. Indeed, in this case, there is
an increase in capacity of up to 66% when using configurations that use the spectrum
more aggressively and yield a non-zero interference level (with 1 < ¢ < 6). Using too large
a value for ¢, however, decreases the benefits of all three metrics. Such configurations put
much weight on local costs, which creates prohibitive interference levels.

As discussed in Section 1.1.1 of Chapter 1, it is intuitive that the best operational
setting should depend on the network density: for networks that are spatially dense, it
makes sense to give priority to interference mitigation. In contrast, for sparse networks
where the nodes have few or no neighbors, it is advantageous to give more priority to local
preferences. This is illustrated in Figure 2.6, where we plot the total capacity when the
spatial density of the network varies, for several values of ¢”. As expected, ¢ = 0 performs

"For this particular experiment, in order to vary the spatial density, we do not simulate one BSS per
cell of the grid. Instead, we draw the coordinates of each AP uniformly at random in the 1000m x1000m
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Figure 2.5 — Capacity, fairness and interference as functions of the penalty weight c.
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Figure 2.6 — Evolution of the total network capacity as a function of the spatial node
density, for several values of the penalty weight c.

the best on dense networks, and a large c¢ is best for sparse networks. However, a small
but non-zero value of ¢ obtains the best performance in all regimes. This is remarkable, as
it implies that a single energy function (using a fixed parameter c¢) enables the algorithm
to operate in the best regime of the interference-capacity trade-off, irrespective of the
spatial node density. Intuitively, the fact that ¢ should be small but positive means that
the most of the weight should be put on the first term of Equation (2.3) (interference
minimization), but that it is also important to give a non-zero weight to the second term

(maximization of spectrum usage).

2.4.4 Performance

We now evaluate the three metrics as functions of the number of iterations of SAW
executed by the BSSs. Figure 2.7 considers two cases, with 6 or 11 channels available (the

area, and each client is randomly placed in the disc of radius R = 100m centered at its AP.
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Figure 2.7 — Capacity, interference and fairness as functions of the number of iterations.
We show the values obtained when SAW tunes both the channel center-frequency and
bandwidth (denoted “c+w”), and when it tunes only the center frequency (denoted “c”).

latter is equivalent to the 2.4 GHz spectrum case depicted in Figure 1.3). In addition, we
compare with a case where SAW only tunes the center frequency (and not the bandwidth).

We make the following observations:

e By tuning both the center frequency and the bandwidth, SAW drastically improves
all three metrics. Interference is completely mitigated with 11 channels and nearly
mitigated with 6 channels. The capacity is multiplied by a factor 2 to 4, compared
to random channel allocations.

e Jointly tuning the center frequency and the bandwidth offers drastic improvements
compared to center frequency only, especially when the available spectrum is scarce.
In this case, the BSSs can naturally switch to smaller bandwidth and operate in
interference-free configurations.

e SAW quickly finds efficient allocations (even though the exact convergence is
asymptotic). Besides, an iteration of SAW only involves the assessment of two

configurations and is inexpensive to realize in practice.
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bandwidth channels), as a function of the percentage of BSSs using SAW.

2.4.5 Influence of the Fraction of BSSs Running SAW

We evaluate scenarios where SAW runs on randomly chosen subsets of BSSs. We then

compute capacity increase and interference decrease observed by the BSSs running SAW,

compared to the initial random allocations of fixed bandwidth channels. Figure 2.8 shows
results when the fraction of BSSs running SAW varies from 0% to 100%, after an average
of 5, 20 and 80 iterations per AP. The capacity always increases for the BSSs running

SAW. Note that after 5 iterations, this capacity gain is not monotonic with respect to

the fraction of BSSs running SAW. We attribute this to the larger convergence time

due to the competition between an increased number of BSSs running SAW. Waiting

for more iterations enables the APs to explore more configurations and attenuates this

effect. Nevertheless, even a small percentage of BSSs running SAW quickly produces a

significant capacity increase, which gives users incentives for incremental deployments.
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Figure 2.10 — Improvement (compared to random allocations of fixed-width channels)
of capacity and fairness as functions of the proportion of selfish APs in the network.

2.4.6 Selfish APs

In lines 7 and 8 of Algorithm 1, when deciding on whether to adopt a new configuration
or not, an AP of a BSS A considers not only the interference received from its neighbors
(I4(B)), but also the interference that itself creates on its neighbors (I5(A)). Note that
in general, due to the asymmetric nature of wireless interference, these two interference
terms need not be equal. With this way of sampling configurations, the APs take into
account the interference that they produce on their neighbors, which might go against
their immediate best interest. This “equity” is necessary for establishing the convergence
of the algorithm in Section 2.3.1, but it could be harmed if some APs do not behave
socially (i.e., according to the legacy algorithm). We now consider such a scenario, where
some subset(s) of APs run a selfish version of the algorithm. These selfish APs do not
take the interference created on their neighbors into account and, for these APs, the first
term of lines 7 and 8 of Algorithm 1 is replaced by > pepr, 1a(B).

Figure 2.9 shows the average capacity and interference experienced by the two cate-
gories of BSSs — with selfish and legacy APs — for varying proportions of APs running the
selfish version of the algorithm. As expected, the maximum capacity is obtained when
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all nodes behave according to the legacy algorithm. For both selfish and legacy APs,
the capacity decreases with the proportion of selfish APs, due to increased interference
levels. In general, the selfish APs obtain a slightly better capacity than the legacy APs.
However, the performance loss due to the presence of selfish APs is not drastic and, even
when 100% of the APs are selfish, they still achieve 87% of the capacity achieved when
all APs are legacy. This is confirmed in Figure 2.10, where we plot the percentage of
improvement of capacity and fairness obtained with our algorithm (compared to random
allocations of fixed-width channels), with a varying fraction of selfish APs. Although
the presence of selfish APs slightly decreases performance, the improvements still remain
above 2.6x for both capacity and fairness.

We explain these large gains in the presence of selfish APs by observing that although
the interference levels experienced by two neighboring links, [ and k, are asymmetric, they
are often strongly correlated. Therefore, if (the AP of) link & seeks to selfishly minimize
its own interference level, it is likely to also decrease the interference that it produces on (.
As a consequence, the price of anarchy remains limited in these cases, and the algorithm
shows some robustness to the presence of selfish APs. A similar conclusion was reached
in [EPT07| in the context of Gaussian interference games.

2.5 Testbed Results

2.5.1 Implementation Description

We now show some results obtained on the 802.11 testbed described in Appendix A. We use
21 nodes of the testbed, which form 10 BSSs spread over the second floor of the EPFL BC
building (see Figure 2.11). We perform the experiments using 802.11g and the bandwidths
of 5, 10 and 20 MHz available with the open-source Atheros ath9k driver. As shown on
Figure A.2 of the appendix, the cutoff values match well the widths of the channels, but
there is leakage on adjacent channels. There is also a 3 dB gain when the bandwidth is
divided by two. Therefore, when implementing the link-interference computation using
Equation (2.1), we consider the transmit and receive masks as perfect bandpass filters
whose cutoff frequencies match the channel bandwidths, with an extra 2.5 MHz on each
side. We empirically observe that this margin is enough to alleviate adjacent-channel
interference. We use the debugfs files described in Appendix A to reconfigure the center
frequencies and bandwidths in a few tens of milliseconds. We give more details on these
timings in Section 2.5.3. Finally, we performed all experiments during the night in the
2.4 GHz spectrum band, using the default rate adaptation mechanism of ath9k (Minstrel).
The 5 GHz spectrum contains more channels, but we use the 2.4 GHz spectrum in order
to create interference-rich scenarios with overlapping channels, where efficient spectrum
assignments are non-trivial. SAW is implemented in userspace using the Click modular
router [KMC100]. We created four Click elements that, in total, consist of about 2500
lines of C++ code. We also modified the Click radiotap parsing elements to be able to
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Figure 2.12 — Implementation of SAW at an access point.

collect link and airtime statistics. A schematic view of the role of each element within the
networking stack of an AP is shown in Figure 2.12. The core logic of the algorithm is fed
by link statistics that come from a link-tracker module and optionally from the clients of
the BSS (for the client-aware version of SAW). The link-tracker module is connected to
a monitor interface that captures frames sent by the AP and neighboring BSSs. When
performing micro-sensing, SAW temporarily blocks outgoing traffic, in order to reduce
packet losses. Control traffic between AP and clients (switch announcements, scanning
requests and scanning replies) is prioritized over data traffic in order to increase the

accuracy of the scheduled switching times.

All BSSs use cost4(bg) = 1/bya, the temperature is set to 7' = 0.1 and the mean
wake-up period is A = 4 minutes. Such a value offers a good trade-off between stability
and reactivity to, for instance, the apparition or disappearance of a neighboring network.
The interval between two micro-sensing is set to 500 ms, and each band is sensed five
times.
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2.5.2 Performance of SAW

We performed several experiments on four scenarios: with UDP or TCP traffic, and
with the client-agnostic or client-aware versions of SAW. The traffic is backlogged, which
represents a frequent use case where all the capacity is used, for instance when several
clients download simultaneously from the Internet. All BSSs start in channel 6 with
a bandwidth of 20 MHz (which represents a worst case in terms of spectrum usage).
As a benchmark, we use a centralized channel assignment based on graph-coloring®.
Specifically, we build an inter-BSS interference graph by having all the APs broadcast
one packet (of size 1000B), each second during one hour. Two BSSs are neighbors if one
of their APs receives at least P% of the beacons sent by the other AP. Then, using the
DSATUR graph-coloring algorithm [Bré79|, we take the largest value of P such that this
graph is 3-colorable. Finally, we use the corresponding coloration to assign one of the
three non-overlapping channels (channels 1, 6 and 11) to each BSS. This procedure is
centralized and is a reasonable upper-bound of what can possibly be achieved with an

unplanned deployment.

Figure 2.13 shows the average sum and the standard deviations (over 20 independent
runs) of the throughputs achieved by each link, for dowlink traffic (from APs to their
clients). Figure 2.14 shows the results for uplink traffic. We also show the average obtained
with the benchmark. In each scenario, SAW starts at 600 seconds. The client-aware
version performs slightly better, both for UDP and TCP traffic. In general, SAW settles
for spectrum assignments that perform similar or better than centralized graph-coloring.
The extra gain is due to the fact that SAW adapts both the frequency and bandwidth
of the channel. In these experiments, much of the gain already comes after one or two
iterations of SAW per BSS (iterations happen every 240 seconds on average), and the
algorithm settles to efficient allocations after approximately three iterations per BSS on
average. We emphasize that these results are obtained by using a completely decentralized
and online implementation.

This increase in network capacity does not come at the cost of fairness. In particular,
it is not obtained by starving some of the BSSs for the benefit of others. This appears
clearly in Figure 2.15, where we show the evolution of the average Jain’s fairness index of
the throughput achieved by all the BSSs over time, for the first scenario (UDP traffic
with the client-agnostic version of SAW). Fairness in the remaining scenarios showed

similar trends.

8Note that with 11 - 3 channel-width combinations and 10 BSSs, the state space has size 33'°. An
exhaustive search for the “real” best configuration is therefore impossible.
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Figure 2.13 — Sum of the link throughputs obtained by the 10 BSSs with downlink
traffic. SAW is started at 600 seconds. The “Bench” line is the average throughput
obtained with a centralized graph coloring approach that uses the 3 non-overlapping
channels with a width of 20 MHz.
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Figure 2.14 — Same experiments as in Figure 2.13, but with uplink traffic.
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Figure 2.16 — Empirical CDFs of the switching and micro-sensing durations.

2.5.3 Micro-Sensing Evaluation

We now evaluate the potential disturbance produced by the micro-sensing procedures.
Because traffic is blocked while the AP (and optionally the clients) perform out-of-band
monitoring, frames can experience an additional delay of up to t,,—s (see Eq. (2.6)).
Figure 2.16 plots the CDFs of 2t4,itch, and t,,—s during the experiments of Section 2.5.2.
Although t,,_s typically remains below 150 ms, this could still be non-negligible for
delay-sensitive traffic. However, this delay is mostly due to the hardware switching-time,
which is relatively high on our cards. Indeed, Atheros and other manufacturers report
switching times of 2 ms or less for newer 802.11 chipsets’. With such chipsets, the
switching overhead becomes negligible, and the additional delay of the micro-sensing
procedure can be upper-bounded by about 50 ms. This is low enough to be tolerated by
most delay-sensitive applications.

We now show the effect of micro-sensing on TCP traffic. Figure 2.17 shows the
throughput of two close-by links, each with fully backlogged TCP traffic. At the beginning
of the experiment, both links use channel 1 with a bandwidth of 20 MHz. After 60 seconds,
the AP of link 1 (the transmitter of this link) fires its timer and samples a new band

9For instance, Atheros reports switching times of 2 ms for its 802.11a/b/g/n AR9390 chipset. See:
http://www.qca.qualcomm. com/wp-content/uploads/2013/11/AR9390.pdf
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Figure 2.17 — Micro-sensing with TCP traffic.

(channel 11, 20 MHz). From 60 to 75 seconds, the AP of link 1 performs micro-sensing for
all the bands that partially overlap with channel 1 or channel 11 (the micro-sensing interval
is 500 ms). At 75 seconds, the AP of link 1 decides to switch to the new band. From 75
to 90 seconds, it broadcasts modified beacons containing the time of the scheduled switch,
which takes place at 90 seconds. Out-of-band sensing temporarily slightly reduces the
TCP throughput. However, the throughput degradation is only marginal, even though our
implementation of SAW is in user-level and our hardware has a relatively high switching
latency.

2.6 Related Work

The problem of allocating channels without considering channel bandwidth has been
largely studied in the context of cellular networks (see e.g. [AHKT03]). It is commonly
cast as a graph-coloring problem, where an edge corresponds to interference between
two cells, and the set of available colors corresponds to the set of channels. Because
graph-coloring is NP-complete for general graphs, heuristics are used to solve it (typically,
techniques based on the DSATURE algorithm [Bré79]). These techniques have been
adapted to 802.11 WLANs as well [VFP09|. The primary drawbacks are that they
require a centralized knowledge of the interference graph and usually fail to capture
much of the granularity of the interference between any two cells [AIKP08|. Some
channel-allocation schemes have been developed specifically for WLANs. |[MBB*06]
explicitly takes into account interference at the clients of each WLAN. However, it
does not provide any optimality guarantee and it requires all the APs to be under a
single administrative domain. MAXchop is a distributed algorithm that runs at the APs
and computes channel hopping sequences [MSAT06]. Unfortunately, it can get stuck
in a local minimum, and there is no guarantee that the allocation patterns minimize
interference across the network. In addition, MAXchop is not transparent, as it requires
APs to periodically scan all the channels. Scanning can take up to several seconds and
heavily disrupts communications. In [RMAQO7], the authors show that accounting for
traffic demands when assigning channels can yield better performance. However, their

37



Chapter 2. Decentralized Spectrum Assignment for WLANSs

algorithm is centralized. [KBC'07] proposes a provably optimal distributed channel-
assignment algorithm that uses a Gibbs sampler [Bre01|. Because it requires APs to run
full channel scans to discover all the channels used by their neighbors, the algorithm
is not appropriate for online and decentralized operation. These scans are necessary to
compute the so-called partition function of the Gibbs measure used by APs to choose
a new channel. Gibbs samplers have been used for distributed resource allocation in
different contexts [MPB07, BPK'10, BMS11], and the utility-optimal algorithm proposed
in Chapter 4 is also based on Gibbs sampling.

A distributed algorithm for channel assignment is presented in [LCBM12]; it does not
require communication between access points, as in our work. The approach is based on
decentralized constraint satisfaction [DBL13], and it provably solves the graph coloring
problem in a distributed way if the number of available orthogonal channels is at least
equal to the chromatic number of the underlying interference graph. Graph coloring
only accounts for the presence or absence of interferers on a given band, irrespectively of
the actual interference level. Furthermore, it does not capture the interference-capacity
tradeoff, and it is not appropriate for selecting operating bandwidths (as the coloring a
graph can be made easy by having each BSS select a small bandwidth, which is definitely
inefficient in general).

Compared to the above works, SAW provably converges towards the stationary
distribution of a Markov random field, but compared to [KBCT07], the costly computation
of the Gibbs partition function can be avoided by using a Metropolis sampler (see
Section 2.3). SAW is also traffic-aware, in the sense that it explicitly accounts for the
airtime consumed by each link when computing the interference. But most importantly,
SAW allocates bandwidths jointly with center frequencies, which none of the channel-
allocation techniques does: these techniques solve a fundamentally different problem,
which consists in maximizing the separation between the channels used by neighboring
nodes. Because the channel bandwidth directly affects the experienced capacity, this goal
cannot be considered in isolation in our case.

Recent work has shown that the channel bandwidth has quite an impact on interference
and overall performance [CMM™08|. Shortly after [CMM™08], the work in [MCW 08|
formulated frequency and channel-width assignment as an integer linear program and
proposes efficient centralized heuristics. More recently, [RSBC11] proposed a centralized
spectrum assignment algorithm and gives useful information on the trade-offs involved
when tuning channel center frequencies and bandwidths. Here again, both [MCWT 08|
and [RSBC11] target enterprise networks, as they rely on the presence of a centralized
coordinator. Such a coordinator does not exist for domestic WLAN deployments.

The problem of spectrum allocation has also been studied in the context of cognitive
radios for white-space networks [YBCT07, BCM*09|. In particular, [YBCT07| considers
the problem of efficiently packing time-spectrum blocks. The authors propose a distributed
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algorithm, but it requires a dedicated control channel. Such a channel is not available in
the context of unplanned WLAN deployments.

2.7 Summary

In this first chapter, we have presented SAW, a decentralized algorithm that finds efficient
variable-width spectrum configurations for WLANs. We have thoroughly validated its
performance with testbed experiments and simulations. The spectrum-allocation problem
is formulated as the global optimization of an energy function, composed of neighbor
interactions (capturing interference) and local bandwidth preferences (capturing capacity).
When the network conditions do not change, SAW converges towards global minima of
this function. In real dynamic settings, SAW constantly adapts spectrum usage. We have
identified simple energy functions that enable the algorithm to solve the interference-
capacity trade-off, irrespectively of the network spatial density. Due to its underlying
Metropolis formulation, where only one new configuration is sampled at a time, the
number of measurements required by SAW scales nicely with the total number of available
channels and bandwidths. This property enables SAW to operate in a fully decentralized
way and target domestic network deployments. In the next two chapters, we explore a
different point of the design space and focus our attention on enterprise networks; we
will see that it is possible to target more sophisticated optimization criteria when some
amount of collaboration is allowed between neighboring APs.

39






Performance Prediction for Arbi-
trary Configurations

3.1 Introduction

In Chapter 2, we designed a spectrum assignment algorithm that optimizes an explicit
balance between interference and spectrum usage. Although the resulting algorithm is
simple and efficient, its optimization objective (specified by Equation (2.3)) does not
relate directly to the performance achievable in each BSS — instead, it uses the sum of
spectral overlaps and bandwidths as proxies for assessing the quality of each configuration.
The main reason is that the actual achievable performance of 802.11 networks (especially
those using variable bandwidths) is difficult to predict, because it is a very intricate
function of spectral configurations and other network properties (such as the traffic loads
of neighboring interferers).

In this chapter, we take a step back from the spectrum-assignment problem, and
focus our attention on the problem of predicting performance for arbitrary spectrum
configurations. In the next chapter, we will come back to the spectrum-assignment
problem and observe that having a way to predict performance helps us refine the
spectrum-assignment optimization objective. In particular, we will see that using an
optimization criterion expressed in terms of performance (instead of using proxies such as
interference) is helpful in practice to find configurations that achieve different spectrum-
sharing objectives (in terms of efficiency and fairness). Due to the complexity of the task,
in this chapter and the next, we do not target fully decentralized methods, rather we
consider scenarios where the APs belong to a single administrative entity (e.g., as is the
case for enterprise networks). We discuss possible extensions to separate administrative
entities when appropriate.

In general, 802.11 networks exhibit several performance intricacies due to complex
interactions between the MAC and PHY layers; these intricacies manifest themselves
in frequency, spatial and time domains. For example, using a wide bandwidth creates
interference in the frequency domain, but using a narrow bandwidth increases packet-
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Figure 3.1 — Black box representation of a link. It takes various configuration and
topological features related to a given link and its neighbors as inputs, and it outputs a
throughput.

transmission times, which can create more interference in the time domain (due to the
rate-anomaly problem of MAC layers based on CSMA /CA [HRBSDO03|!). In addition, as
mentioned in Chapter 1, a narrow bandwidth packs more Watts per Hertz for a fixed
transmit power, which improves the transmission range [CMM™08], but also increases

interference in spatial domain.

Existing performance models for 802.11 networks, such as the one proposed by
Bianchi [Bia00|, usually adopt explicit and bottom-up approaches; they model the actual
mechanics of the protocol (for example, the backoff procedure of the MAC layer in [Bia00])
in order to compute throughput figures. Unfortunately, it is difficult to use such models
to capture heterogeneous physical-layer configurations, such as variable channel widths
or variable transmit powers. In contrast, textbook models based on the SINR (signal to
interference-plus-noise ratio) can be used to capture some of the phenomena occurring at
the physical layer?. The main drawback of SINR models, however, is that they are not
meant to capture 802.11 performance. In particular, they do not take the MAC layer into
account and, as we will observe, they do not capture the actual performance of interfering

links when CSMA /CA is employed.

In this chapter we observe that, if there is interest in predicting performance for
arbitrary settings, it can be more efficient to learn implicit and top-down models directly
from a set of observed measurements. We treat Wi-Fi links as black boxes with potentially
unknown internal mechanics (see Figure 3.1). Such a black box takes some parameters
as inputs (such as the spectral configurations of a Wi-Fi link and its neighbors, as
well as topological features such as current measurements of channel qualities), and it
outputs a throughput value. In this setting, our goal is to use a limited set of real-world
measurements to find a function providing an accurate mapping between inputs and
outputs, both of which might have never been previously observed. In particular, we do
not attempt to seed a pre-existing model (such as SINR-based or Markov-based) with

!The rate-anomaly problem is an effect due to the CSMA /CA time-sharing mechanism. With this
mechanism, contending stations have comparable probabilities to attempt a transmission. However, the
stations using a low physical rate need more time to transmit their frames, which penalizes the other
stations.

2To some extent, we used such a model when defining interference in Equation (2.1) of Chapter 2, as
it is based on the model of [MSBAOG6] for partially overlapping channels, which quantifies interference in
terms of interfering power in the SINR.
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measurements; our approach is rather to learn the model itself from a limited set of
measurements.

Constructing useful black boxes from measurements is difficult for two main reasons.
First, they must capture a fair level of complexity; the cross-layer relationships between
the various input parameters and the resulting throughput are usually complex, multi-
modal, nonlinear and noisy. Second, it is in general infeasible to simply measure the link
performance for each possible combination of inputs. Instead of conducting exhaustive
measurements, we observe that a statistical representation of these black boxes can be
learned by observing a limited number of input/output combinations. Using supervised
machine learning techniques, it is possible to generalize the observations made on this
limited subset of measurements and to still capture the complex relationships between the
inputs. We build such implicit models using real-world measurements and we test them
systematically, by asking them to predict the throughput for links and configurations that
have never been observed during the initial measurement phase. We observe that our
learned black boxes improve prediction accuracy over models based on the SINR (which
is usually the preferred metric for allocating physical-layer resources such as spectrum or
transmit power). In particular, we will see in the next chapter that such black boxes are
instrumental (and more useful than SINR models) for capturing intricate interference
patterns and finding efficient spectrum and transmit-power configurations.

The remainder of this chapter is organized as follows. In Section 3.2, we explain our
approach through a few illustrative examples. In Section 3.3, we present our method
to learn black box performance models. We evaluate the accuracy and generalization
of our models in Section 3.4. We discuss the limitations of our approach in Section 3.5.
Finally, we present some related work in Section 3.6 and summarize our main findings in
Section 3.7.

3.2 DMotivation

In this section, we first detail some of the complexities inherent to the problem of
allocating variable-width spectrum chunks to wireless nodes. In particular, we show why
the performance achieved by a link depends in a highly complex fashion on spectrum
configurations adopted by this link and its neighbors. Second, we give an example where
SINR-based models — the prevailing class of models for adapting PHY layer parameters —
fail to capture the actual performance of 802.11 networks.

3.2.1 An Introductory Two-Link Example

Consider a simple setup with two Wi-Fi links [ and &k (which can be composed of two
access points and two clients), shown in Figure 3.2(a). The two access points have
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Figure 3.2 — Two interfering links (a), and some possible spectral configurations (b). In
this chapter, we propose a method to learn models that can predict the performance of
the links in such arbitrary configurations.

arbitrary traffic loads (e.g., due to arbitrary exogenous arrivals). Consider now our
problem of allocating a combination of channel center-frequencies and channel widths
to these two links. Assuming that the two possible channel widths are 20 MHz and
40 MHz (as in 802.11n), and that there is 40 MHz of total spectrum available, we list
some possible allocations on Figure 3.2(b) (see [RSBC11]| for an extensive treatment of
such an example). Efficiently selecting configurations would clearly benefit from a model
which could, for each possible combination of configurations, predict the throughput
achievable by each link. A model explicitly designed for this task should take at least the
following qualitative aspects into account:

e If the links are sufficiently far apart in space, the spectrum can be re-used, and
both links can use a bandwidth of 40 MHz (allocation (i)).

e If the two links are physically close to each other, allocation (i) results in transmission
arbitration in the time domain. Instead, it might be more efficient to opt for
allocation (ii) to use orthogonal bands and to reduce the time spent in backoff.
However, it is not clear a priori when allocation (ii) starts outperforming allocation
(i). The actual performance improvements depend on the various channel gains,
traffic loads, backoff times, adjacent-channel interference, etc.

e Iflink [ has a poor channel quality, it can be beneficial to use allocation (iii), as using
a narrow bandwidth increases the SNR of link /. Yet, using a narrow bandwidth
has also the effect of increasing the time required to transmit a packet, which
exacerbates the rate anomaly suffered by 802.11 [HRBSDO03| and can potentially
decrease the overall efficiency. In addition, allocation (iii) can also be attractive if
link [ has a low traffic load (and thus does not create much interference on k).
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e A similar reasoning can be made for configuration (iv). This allocation can be the
most efficient if, for instance, link & has a low traffic load. In this case, it does not
need much spectrum and does not create much contention.

e Finally, depending on the traffic loads and the other surrounding networks, using
allocation (v) with partially overlapping channels has the potential to create more
efficient spectral re-use patterns [MSBAOQG], as it frees a part of the total available
spectrum. However, in practice, it is in general difficult to predict when partially
overlapping channels are beneficial [DGVB*11].

Clearly, as also noted in [RSBC11]|, performance depends in a highly complex way on
the actual topology, channel qualities, spectral configurations, etc. It is especially hard
to predict in quantitative terms when a given configuration outperfoms the others. The
complexity is further increased if the nodes can adapt their transmit powers; although
adapting transmit powers can potentially improve spectral re-use [BEKF07], it is rarely
used in practice as the impact is difficult to predict [MPBO07].

The difficulty of predicting performance in the presence of complex interference
patterns limits the vast majority of works proposing models or optimizations for the
PHY layer to using SINR-based models (see for instance the Algorithm presented in
Chapter 2, as well as other works proposing spectrum assignment methods [RSBC11,
MSBA06, MPBO07|). However, SINR models are not meant to capture 802.11 performance
and, as we will see now, they can fail to capture important performance patterns.

3.2.2 An Example Where SINR Models Are Inappropriate

We now consider a real testbed example, again with two interfering links [ and k. In this
case, both links use 20 MHz of channel bandwidth, with the same center frequency (i.e.,
we consider a simpler setup with no spectral separation). The two links send saturated
UDP traffic with packets of 1500 B, and they both use 802.11n in the 5.8 GHz band
(void of external interference), using the same 2 x 2 MIMO configuration. Link [ has a
fixed transmit power set to 12 dBm, and link k£ varies its transmit power from 3 dBm
to 21 dBm. We measure the throughput obtained by [ for two different pairs of links
(I,k) on our indoor testbed (we give more details on our testbed in Appendix A). For

comparison, we also compute the information-theoretic capacity ¢; of link [ as
¢ = constant - logy (1 + SINRy), (3.1)

where the constant factor accounts for the bandwidth and MIMO configuration, and
where SINR; denotes the SINR of link /. On such a two-link setup, the SINR is given by

SINR; = — L (3.2)
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Figure 3.3 — Measured throughput and theoretical capacity of [, when k varies its
transmit power. The results are shown for two different pairs of links ({1, k1) and (2, k2)
from our testbed.

where Py, (respectively, P 1) denotes the received power at the receiver of [ (as measured
by our NICs) from the transmitter of [ (respectively, from the transmitter of k), and
where Ny is the background noise (also reported by our NICs).

We show both the measured throughput and the theoretic capacity for the two link
pairs in Figure 3.3. The (schematized) topologies are shown at the top of the figure. For
the first link pair, the throughput obtained by [ decreases by about 50% when k increases
its transmit power. This is due to an increased likelihood of collision at I’s receiver and
carrier-sensing activation at I’s transmitter, as k increases its effective interference range.
This qualitative trend is captured by the theoretical capacity, which decreases when P
increases. Note that, in this case, the magnitude of the theoretical capacity is much higher
than the actual throughput of the link. This is expected, because the the theoretical
capacity does not account for the overhead of the MAC layer. In fact, it seems that in
this case, the theoretical capacity can provide a reasonably accurate characterization of
the throughput, if it is scaled appropriately.

However, the situation is very different (and more surprising at first sight) for the
second link pair. Here, we can decompose the measured performance in three distinct
regimes (represented by three shaded regions in the figure). When k’s transmit power is
low, the links are nearly independent and [ suffers little interference from k. When k’s
transmit power grows to intermediate values, k starts interfering with [. In this case, [
carrier-senses k, and interference mitigation is done in the time domain via CSMA /CA.
However, a closer inspection of packets reveals that link k itself does not have a good
channel quality (as it uses only an intermediate transmit power), which forces it to
use relatively robust (and slow) modulations. As a result, in this intermediate phase,
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k consumes a significant fraction of time transmitting its packets, which reduces [’s
throughput (due to the rate anomaly). Finally, when k uses a large transmit power, it
also uses faster modulations, which has the apparently paradoxical effect of increasing I’s
throughput.

In this second example, the information-theoretic formulation for the capacity does
not capture all these cross-layer and multi-modal effects that are specific to the MAC
layer of the 802.11 protocol. Instead, it shows a monotonic dependency on transmit
power stemming from its monotonic relationship with the SINR. Overall, the information-
theoretic capacity treats the case of Gaussian channels subject to constant and white
noise interference, with no intent to model 802.11 networks. In fact, in the cases where a
time-sharing scheme such as CSMA /CA is employed, links often have the opportunity to
transmit alone on the channel, thus without observing any interference at all during their
transmission?.

From these two simple examples, we observe that the theoretical capacity (i) might
have a significantly different magnitude than the observed throughput, and (ii) might not
capture the non-monotonic, multi-modal complex behaviors due to cross-layer interactions
occurring when links are interfering (note that this observation holds for any model that
is monotonic in the SINR). Despite these problems, and despite the low predictive value
on throughput given by the wireless community to SINR models, these models are still
currently the models of choice for allocating resources at the PHY layer, due to their
generality. By adapting judiciously the power values in the SINR Equation (3.2), it is
possible to use variable transmit powers (as we just did), but also partially overlapping
channels [MSBAO6| and variable bandwidths [RSBC11] as inputs of SINR models. In
addition, a large body of theoretic literature on optimal resource allocation also relies
on SINR models in various contexts [EPT07, HBH06, BMS11, QZC10, HP12, MPBO07,
KBC*07].

3.3 Learning Performance Models

3.3.1 Approach

In the previous section, we observed that, even in the best cases where SINR-based models
correctly capture the correct trend of the throughput, they can still suffer from a scaling
problem, whereby they predict a capacity that has a significantly different magnitude
than the observed throughput. Therefore, a natural step for improving the accuracy is to
seed (or fit) some parameters in SINR-based models (for instance, a factor controlling the
magnitude of the prediction) to the observations of actual measurements. The approach
of seeding a model with measurements has been taken in [RMR 06, LQZ*08, RSBC11]
and others (see Section 3.6 for a discussion).

3This is also the reason the actual throughput might be largely above the predicted capacity.
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Figure 3.4 — Overview of our learning setup.

In this chapter, we also use an initial measurement phase. However, we take a step
back and treat the problem of fitting a model to measurement as a general regression
problem. Contrary to prior approaches, we do not try to fit or to seed a previously
existing model (such as, for instance, SINR-based or Markov-based). Instead, we rely on
the measurements in order to directly learn the model itself, using supervised machine
learning. Our main reason for doing so is that supervised machine learning proposes
rich models for regression (in terms of the complexity of the dependencies that they can
capture), which have efficient fitting (or learning) procedures. Our overall approach is

summarized in Figure 3.4, and it consists of four main steps:

1. Measurement phase: This phase consists in performing N short-duration con-
trolled experiments. Considering again the black-box representation of Figure 3.1
(although generalized for more than two links), each experiment consists in mea-
suring the throughput of a given link [, for one particular combination of inputs
(which we call features). This phase is relatively short; we observe in Section 3.4.4
that it is possible to “learn” our entire indoor testbed of 22 nodes with reasonable

accuracy in less than 6 hours.

2. Learning phase: Once the measurements are obtained, this phase consists in
finding a function that maps the features to observed throughputs. The function
should be d-dimensional if there are d features, and it should approximate the
throughput well on the measured data points. However, to be useful, it must
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not overfit existing measurements that are intrinsically noisy. Instead, it should
generalize to unseen combinations of input features (which can potentially relate to
unseen nodes and links). Supervised machine-learning provides the natural tools to
address this challenge.

3. Black-box representation: Once a function has been found that is both accurate
and generalizable, we can discard the measurements and use the function itself to
obtain throughput predictions.

4. Usage in resource allocation (Chapter 4): This step is the operational phase.
If we target distributed resource-allocation, the black box can be used as an oracle
by the access points themselves. For instance, in the two-links example of Figure 3.2,
if [ collaborates with k to acquire some of the features at a certain time instant,
it can produce throughput predictions for various configurations (and thus choose
efficient configurations without probing).

Notably, we observe in Section 3.4.3 that learned models continue to be useful in new or
unseen environments, and that the training procedure does not need to be repeated when
new wireless links come and go. We detail our procedure in the remainder of this section.

3.3.2 Feature Selection

Consider a link 7, for which we want to predict saturated throughput (i.e., under saturated
traffic load?®) for arbitrary spectrum and transmit-power configurations, given a set Nj of
K neighboring links with arbitrary conditions, configurations and traffic loads. Such a
scenario is shown in Figure 3.5 for K = 2. The features must include factors that affect
the performance and are measurable by the transmitter of [ and its immediate neighbors.
We selected the following list of features, because they all have an immediate effect on
performance (see e.g., [BEKF07, CMM*08, MSBA0G6, HRBSDO03)):

e The power received by each node of [ from every transmitting node, and the power
received by every other node, from the transmitter of [. These quantities are denoted
Py, ..., Py in Figure 3.5 (assuming downlink traffic, from the APs to their clients).
They depend on the transmit powers and the various channel gains, and they can
be easily measured online by commodity hardware using the RSSI (received signal
strength indicator). There are 5K + 1 such power quantities in general.

e The channel widths used by [ and by the links in N;. There are K + 1 such values.

4We target saturated throughput because it is the maximum achievable throughput in a given
configuration. In particular, we assume that if throughput ¢ is achievable in a given setting, then any
throughput #' < t is also achievable in the same setting. Note that this concerns the final predicted
throughput of link [, but our models accounts for neighboring links with arbitrary traffic loads.
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Figure 3.5 — Throughput prediction setting with a link [ and two neighboring links
N; = {k1, ko}. We wish to predict the throughput that [ could potentially obtain, given the
various received powers, as well as the physical rates, channel widths, center frequencies,
and traffic loads on k1 and k.

e The spectral separations between the center frequency used by [, and the center
frequencies used by all the other links in N;. There are K such values.

e The K average traffic loads of the links in M.

e The physical rates (determined from the MCS index of 802.11n) used on each link in
N,. These are used as features, because it is known that the modulation and coding

employed for transmission have a strong effect on the performance of neighboring
links [HRBSDO3|. There are again K such values.

Adding up the above-mentioned features, we have access to d := 9K + 2 quantities to
estimate the throughput that link [ can achieve in the presence of K interferers. Note
that this list of features is not an exhaustive list of the factors affecting performance that
can be known or measured by the APs. For instance, we could make it more complete by
including the packet sizes, higher order statistics to describe the traffic loads of interferers
(instead of the mean only), or more detailed PHY layer information (e.g., to capture
non-802.11 interference, multipath effects or frequency-selective fading®). Including more
features could further increase the predictive power and generality of the learned models.
However, the features selected here already enable us to build useful models and have the
advantage of being easy to acquire with commodity hardware.

3.3.3 Measurement Phase

The initial measurement phase consists of N measurements with different combinations
of features. Some of the features can be directly controlled (namely, the channel widths,
spectral separations and traffic loads) and others cannot (the received powers depend
both on the transmit powers and channel gains, and the physical rates depend on the

’[HHSW10] shows that considering channel measurements at the OFDM subcarrier level provides
substantially more information on channel quality than crude RSSI. Unfortunately, such measurements
are not available on our wireless cards.
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auto-rate mechanism used by the APs). Each of the N measurements consists of two
sub-experiments. We first perform an experiment during which link [ is silent, in order to
obtain a corresponding vector x € R? of features (some of which are controlled, others are
measured). We then repeat the experiment with [ sending saturated traffic, and measure
its throughput ¢;. Our goal is to expose the learning procedure to as wide a variety of
situations as possible. To this end, we apply the following sampling procedure for each of
the NV data points.

We use 802.11n for all measurements in this chapter. We start by selecting a link [
uniformly at random among all the links formed by all the nodes of the network. We
then sample K random interfering links, where K itself is randomly drawn between 0
and maz K, and max K denotes a fixed upper bound on K. For [ and the K links in
N, we sample transmit powers and spectral configurations uniformly at random from
the set of configurations that do produce some interference (i.e., such that each link in
N uses a band at least adjacent or partially overlapping with [). Finally, for each link
k in N}, we sample a traffic load in the interval (0, h(wg)/K], where h(wy) is equal to
the maximum throughput achievable on an isolated link using bandwidth wy. We take
h(20 MHz) = 80 Mbps and h(40 MHz) = 130 Mbps in our training procedure, in line
with the maximum achievable throughput of our 802.11n nodes. Our goal is to predict
performance for arbitrary interfering loads, and sampling the loads in this way enables
us to expose the learning procedure to different environments with both light and heavy
contention. In particular, we measured that the offered loads of the nodes in A was above
capacity (i.e., saturated) in about 54% of the experiments (mainly due to inter-neighbors
interference). The remaining experiments consist of non-saturated conditions.

Once the configurations are chosen, we perform the first experiment with only the K
interfering links active. During this experiment, we measure the average physical rates
used by each of the K links in A, and we group all the above-mentioned features in
a vector x;. In order to vary K between 0 and max K while keeping features vectors
of fixed dimension d, we append 9(maz K — K) default “flag” values to x;, using -110
dBm for all the power values, and setting all the remaining features to zero®. We then
perform the second experiment in the same conditions, but with link / sending saturated
traffic, and we measure its achieved throughput; this represents our target value. Each
of the two sub-experiments constituting each of the N data points needs only to last a
few seconds (in order to measure average physical rates and throughput), and the whole
procedure is easily automated.

5The current number of interfering links K is thus an implicit feature, encoded by the presence /absence
of flag values.
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3.3.4 Learning

Let us write {(x1,%1),..., (Xn,tn)} C R% x R for our set of measurements. Our goal is
now to find a function f : R* — R that maps x; to a value close to the target ¢; for each
measurement ¢. This is an instance of a regression problem, and we learn the function f
directly from the observed data.

Several techniques exist for learning functions from data. We do not go into the
details, but rather we present the overall characteristics of the different approaches that
we consider for this task, and we refer the reader to reference textbooks for details (see
e.g., [Bis06, HTF08|). We consider the following regression techniques.

e Regression tree: This technique fits a binary tree to the data. Each feature
vector corresponds to a path in the tree (from the root to a leaf), and each leaf
corresponds to a (discretized) throughput value. The resulting model is elegant,
because it yields predictions that can be evaluated by a sequence of “if-else” clauses
on the features”. However, fitting an optimal tree is a NP-hard problem, and the
obtained trees are usually sub-optimal. It also produces hard decision thresholds,
which can affect generalization and accuracy.

e Gradient Boosted Regression Trees (GBRT): This technique combines the
predictions of M regression trees. Given a feature vector x, the throughput is
predicted as

M
t=f(x) =) mmhm(x).
m=1

In the above expression, h,,(x) denotes the prediction of the m-th tree, and the m,,’s
are the weighting coefficients (learned with gradient boosting [HTF08]). The number
of trees M, as well as their depth, is obtained by cross-validation (see [Bis06]). Using
several trees has the potential to largely improve the predictive power, compared to
a single tree, however as we will see, it might still be subject to potential overfitting.

e Support Vector Regression (SVR): For a feature vector x, this method outputs
a predicted throughput given by

N
t=f(x)= Zaikz(xi,x) + b,
i=1

where the «;’s and b are the fitted parameters (obtained by solving a convex
minimization problem that accounts both for regression error and overfitting). The
function k(-, -) is a so-called kernel function. We generate our own SVR models using
a common kernel function known as the radial basis function (RBF), specified by

“For instance, on a simplistic tree of depth 2, a regression path could look like: “if received power
< X and frequency offset > Y, then predict Z”.
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k(x;,x) = exp(—7||x — x;||?), where ~ is a parameter obtained by cross-validation.
Usually, most of the «a;’s are equal to zero, and therefore SVR requires only a
fraction of the initial measurements to be stored. Furthermore, this technique has
a high descriptive power, and it can efficiently prevent overfitting (see [SS04| for
more details).

e SINR-based model: As a comparison to pure machine-learning techniques, we
also fit SINR-~based models to our measurements. In particular, we consider the
following variant to Equation (3.1) for computing the theoretical capacity ¢; of link
l:

¢ =T -w; -logy(1 + SINR;), (3.3)

where I' is a constant that is fitted to measurements (using minimization of least
square error), in order to correct for the scaling problem mentioned in Section 3.2.
In addition, we also use the approach of Chapter 2 proposed in [MSBAOG] in order
to account for partially overlapping channels; specifically, we scale each power value
appearing in the SINR Equation (3.2) by an appropriate value that accounts for the
spectral overlap, assuming perfect bandpass filters. To the best of our knowledge,
these models are the only existing models that can produce performance predictions
at such levels of generality (i.e., taking into account arbitrary spectral configurations
with variable widths and variable transmit powers).

3.4 Accuracy of Performance Predictions

In this section, we evaluate the accuracy and generalization of the different learning
strategies in various conditions.

3.4.1 Experimental Setup and Methodology
Experiment Setup

We use 22 nodes of the testbed described in Appendix A, which are shown in Figure 3.6.
The experiments are conducted using 802.11n and the default Minstrel autorate algorithm.
We employ 20 and 40 MHz channel widths, 2 x 2 MIMO, and 10 different transmit power
values in the set {3dBm, 5dBm ,...,21dBm}. We use the 5.735-5.835 GHz band, which
comprises a total of 100 MHz of spectrum.

Methodology

Our objective is to test the models with unknown combinations of features. As such, we
only predict throughputs for data points that do not appear in the N measurements used
for learning (or training). To this end, we always split our total set of measurements into
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Figure 3.6 — Layout of the 22-nodes used for the experiments. We also show the different
link categories and the two halves of the testbed used in the experiments of Section 3.4.3.

a tratning set and a test set. The training set consists in the actual N measurements
used for learning the models and their parameters, whereas the test set is used only once,
for measuring the final accuracy.

We gathered a trace of 8900 measurements®, with maz K = 3. This set is voluntarily
larger than what is actually needed, in order to enable us to test the effect of the number
of measurements N on the models quality.

To evaluate the goodness of the regressions for the various models, we use the coefficient
of determination® R%. If we have a test set with n target throughput measurements
t1,...,t, and a given model predicts the throughputs 1, ...,%,, then the coefficient of
determination is given by R

B2 Xilti—t)
> (ti— 1)
where t is the average throughput, given by ¢t = %Zl t;. Concretely, the R?-score
quantifies how well a predictor does, compared to the simplest baseline strategy that
always predicts the mean throughput. It is equal to 1 if there is a perfect match between
predicted and measured throughputs. Whereas, it can be negative if a strategy would do
better by always predicting the mean throughput. In addition to the R?-score, we also
compute the root mean squared error (RMSE), defined as

1 R
E = y y 2.
RMS /fn % (t; — 1)

We used the Python machine learning package scikit-learn [PVGall] to learn the
various models.

80ur dataset is publicly available: http://www.hrzn.ch/data/lw-data.zip
http://en.wikipedia.org/wiki/Coefficient_of_determination
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Figure 3.7 — Summary of prediction performance for various models.

3.4.2 Prediction Accuracy

In order to compare the accuracy of the different classes of models, we perform 50
consecutive splits of our measurements in training and test sets (i.e., 50-fold cross
validation [Bis06]). For each split, we evaluate the R?-score and RMSE, and we show the
average and standard deviations in Figure 3.7 for each class of model. In addition, we
also show the detailed distribution of prediction errors in Figure 3.8 for models based on
SVR and GBRT.

It appears clearly that the learned models, in particular those based on SVR and
GBRT, perform significantly better than the SINR-based models. In terms of R?-score,
learned SVR and GBRT models improve the prediction accuracy by 54% and 71%,
respectively, compared to SINR models (which, we recall, are the predominant class of
models capturing such things as overlapping channels). In terms of error distribution,
90% of the errors made by learned models are between —25 Mbps and 25 Mbps, whereas
90% of the errors made by SINR-based models are between —35 Mbps and 36 Mbps.
The higher accuracy of the learned models is remarkable; it demonstrates that, as far
as performance prediction is concerned, learning abstract models that come from the
machine learning domain — without any knowledge of 802.11 networks — can be more
efficient than trying to fit (or seed) pre-existing SINR models.

In order to visualize the actual predictions in detail, we also show a scatter plot of
the predicted throughputs, against the actual measured throughputs, in Figure 3.9. We
show both the predictions obtained by the SINR model and the learned SVR model (for
reasons that will be clear soon, we show the results for SVR instead of GBRT, even
though GBRT performs better in this particular setting). On these plots, the closer the
points are to the diagonal, the better the prediction accuracy. Clearly, here too, SVR
models perform much better and produce fewer outlying predictions than SINR models.
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Figure 3.8 — Empirical CDF of prediction errors. The “mean” model represents the
errors obtained by a baseline predictor that always predicts the mean throughput of the
training set.

Note that obtaining perfect predictions is impossible here, because both the measured
features and the throughput are highly noisy variables, measured with commodity hard-
ware. To illustrate this, we examine in more detail the features corresponding to the
worst prediction obtained by both models (shown by an arrow on the plots — incidentally,
this is the same point for both models). This point corresponds to a link [ subject to
no (controlled) interference (i.e., K = 0), with an apparently good channel quality (the
measured RSSI is -59 dBm in this case), and using a bandwidth of 40 MHz, supposedly
yielding the largest capacity. Yet, despite these features, the measured throughput was
low. We can only speculate about the causes for this discrepancy; it could have been an
especially unfavorable conjunction of high noise, both in the measurements of channel
quality (which might have been worse than measured) and/or obtained throughput (which
might have been temporarily altered by some higher layers’ factors). In any case, this
example, although relatively extreme, illustrates the limits of throughput predictability
with imperfect information.

3.4.3 Generalization

Due to the split between the training set and test set, the previous results address cases
where throughputs predictions are produced for unseen combinations of features. We now
attempt to push our models further, by making them predict throughputs for unseen
links, potentially belonging to different environments.
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Figure 3.9 — Predicted versus measured throughput, for SINR and a learned model, on
a test set of 200 points.
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Figure 3.10 — Prediction accuracy on links that have never been observed during the
learning phase.

Predictions for Unseen Links

For each possible link [, we remove both [ and its reverse link (obtained by inverting the
transmitter and the receiver of ) from the training set. We then produce throughput
predictions for each data point that contains [ (or its reverse link), and show the results in
Figure 3.10. Compared with Figure 3.7, some models (especially those based on regression
trees) see their accuracy slightly decreased. However, the models learned with SVR still
perform remarkably well; in terms of R?-score, their accuracy is reduced by less than 4%,
and they still improve the accuracy by 49%, compared to SINR-based models.

Different Environments

We now manually divide the links present in our trace in three distinct categories,
depending on the type of attenuation that they experience. The categories are shown
in Figure 3.6, and they correspond to the following link division: (i) links that traverse
mostly empty space, (ii) links that traverse sparsely spaced walls and (iii) links that
traverse densely spaced walls.
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Figure 3.11 — Prediction accuracy for never-observed groups of links. Even in the
difficult cases, learned models largely outperform SINR models.

For each category, we remove all the links (and their respective reverse links) belonging
to this category from the training set. We then build the test set so as to predict throughput
for links belonging only to this category. The goal of this experiment is to test prediction
accuracy in the worst possible conditions: each model is learned on links that operate in
conditions radically different than the conditions prevailing during the actual predictions.
In addition to the three link categories (i)-(iii), we also split our testbed in two halves
(also shown in Figure 3.6). Here too, we test the prediction accuracy when learning the
models on the first half A of the testbed, and testing them on the second half B. The
resulting accuracies are shown in Figure 3.11.

Even in these difficult cases, the learned models based on SVR show a graceful
degradation and keep a relatively high accuracy (with R2-scores always larger than
0.54). When producing predictions for the half B with models learned on the half A,
models based on SVR even obtain similar accuracies as when learning using the full
testbed. This enables us to draw some conclusion on the extent to which our method
generalizes. Even when learning models on a different part of the testbed, or using
radically different links, abstract models based on machine learning still have far more
predictive power than measurement-seeded models based on SINR. Note that such an
ability to generalize to drastically different conditions constitutes a promising avenue for
extending the applicability of learned models to networks that do not belong to a single
administrative entity, and where obtaining the initial measurements is difficult.

3.4.4 How Much Learning Is Needed?

Finally, we measure the accuracy as a function of the training set size N. For different
values of N, we learn models using N experiments sampled at random from our complete
experiment trace. We then predict the throughput for all the other experiments, and
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Figure 3.12 — Prediction accuracy as a function of number of measurements N (note
the logarithmic scale of the z-axis).

measure the R?-score. The results are shown in Figure 3.12. Using N = 100 training
experiments is enough to obtain better accuracy than SINR models, and N = 1000
experiments already yield good predictive accuracies. If each experiment consists in 10
seconds of measurements (which is the duration that we employed), this means that
an efficient performance model for an entire building-scale network such as ours can be

learned in less than 6 hours.

3.5 Limitations and Discussion

We evaluate our learned models in static conditions, a setting for which throughput pre-
diction is somewhat easier (compared to say, high mobility with fast fading, short channel
coherence times, etc). This is because, in this thesis, we deliberately restrict ourselves
to using features easily accessible on commodity hardware (e.g., RSSI measurements).
Such features are only meaningful on relatively coarse timescales (typically seconds) and
cannot capture such fast-changing phenomena. In this sense, our learned models suffer
from the same timescale limitations as any model (including SINR) that uses similar
measurements. Extending such a learning framework to using features that operate at

shorter timescales is an interesting avenue for future work.

Notably, using features that operate at relatively coarse timescales already enables
our learned models to be useful in practice. In particular, it fits well the needs of the
algorithm described in Chapter 4, which uses such a black box in order to re-evaluate the
spectrum configuration of each AP every few minutes on average!®.

10 At faster timescales, the overhead of switching to different spectrum bands on commodity hardware
would exceed the benefits of employing efficient spectrum allocations.
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3.6 Related Work

802.11 networks have been extensively studied in the literature. The performance and
fairness of the MAC layer and its CSMA/CA procedure are well captured by several
theoretical models [Bia00, DDT07, MDL07, DDT09]|. Unfortunately, these models do
not take PHY layer diversity into account and are agnostic to spectral configurations
— we can therefore not use them to select spectral configurations. Several papers also
propose measurement-based approaches to model performance and interference in 802.11
networks. In particular, [RMRT06, KGD07, QZW*07, LQZ" 08| propose to conduct
initial measurement campaigns (where the number of measurements is typically a function
of the number of nodes present in the network), in order to fit various performance
models. [RMRT06] fits a model based on the SINR in order to estimate the packet loss
probability, whereas [KGDO07|, [QZW™*07] and [LQZ' 08| use measurements-based Markov
chain models to predict the capacity and/or interference of 802.11 networks. Here too,
the models are agnostic to the spectral configurations of the nodes, and they are designed
to work when the links operate on a same channel, with a fixed channel width. In this
chapter, we also use an initial measurement phase. However, the important difference
with other approaches is that we are not constrained to any particular model, rather we
employ supervised machine learning to obtain any suitable model that captures both
PHY and MAC layer complexities together. This enables us to address more general
interference scenarios, where nodes employ CSMA /CA with arbitrary traffic loads and
heterogeneous spectral configurations.

[HHSW10] observes that measurements at the OFDM subcarrier level largely improves
the accuracy of performance prediction. Unfortunately, the method does not take
interference into account, and it cannot be used to make performance predictions when
several links operate at the same time.

Finally, a few papers propose to use machine learning techniques in the context of
wireless networks. [DH09| discusses the use of k-NN for link adaptation and [CHSOO07]
proposes an architecture for cognitive radios with learning abilities. However, these works
do not attempt to predict performance. To the best of our knowledge, ours is the first
work using machine learning to predict actual Wi-Fi performance.

3.7 Summary

We have investigated and validated a new approach for predicting the performance
of Wi-Fi networks. Rather than manually fitting complex models to capture complex
dependencies, we have shown that it is possible to directly learn the models themselves,
from a limited set of observed measurements. This approach bypasses the usual modeling
process, which requires both deep knowledge and tedious analysis, and yet often yields
models that are either too restricted or too inaccurate. We observe that abstract black-box
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models built using supervised machine-learning techniques — without any deep knowledge
of the complex interference dynamics of 802.11 networks — can largely outperform the
dominant class of SINR-based models. Further, we have shown that these models still work
when they have to predict performance for links that have never been observed during
the learning phase. In addition, their performance degrades gracefully when predicting
performance in different environments that have not been observed during learning
(such as free space and dense walls). This observation offers interesting perspectives for
extending the usage of learned models to different administrative entities.

In the next chapter, we will use one such model as an oracle in a new distributed
utility-optimal resource allocation algorithm. We will observe that this algorithm adapts
well to various optimization criteria, and that our learned model is instrumental for
achieving good performance.
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A Utility-Optimal Collaborative
Spectrum-Assignment Algorithm

4.1 Introduction

In this chapter, we come back to the spectrum-assignment problem. We take a direct
approach in our optimization procedure; instead of optimizing proxies, such as interference
and spectrum usage (as in Chapter 2, where we minimize the function given by Equa-
tion (2.3)), we use the models built in Chapter 3 in order to optimize a function of the final
performance. The algorithm proposed in this chapter allocates channel center-frequencies,
bandwidths and the access points’ transmit powers. Adapting the transmit power is
notably challenging, as it is difficult to predict the effect that it has on performance (see
[MPBO7| and Section 3.2.2 of the previous chapter). Allocating variable transmit powers
can be seen as a form of “generalized” spectrum assignment task, where the access is
modulated not only in frequency, but also in space.

Our goal is to design an algorithm that is utility-optimal, in the sense that it maximizes
a sum of user-defined utility functions that are functions of the final performance obtained
in any given configuration. This setting relies on the “direct approach” of performance
prediction, and it enables our algorithm to optimize an arbitrary balance between efficiency
and fairness (where the balance is defined in terms of the utility achieved on each link).
In this context, our algorithm uses some collaboration between neighboring APs for two
reasons. First, when predicting the achievable performance for a given configuration, the
APs need to obtain some information about their neighbors. This information includes the
current spectrum assignment, the current traffic load, and the various channel gains that
each neighbor observes from the nodes in the BSS of the querying AP. These constitute
some of the inputs of the performance model. Second, in order to target utility-optimal
configurations, the APs also need to weigh the effect (in terms of utility) that each
potential configuration is predicted to have on its neighbors.

In order to implement collaboration in a distributed setting, we devise a neighbor-
discovery mechanism, whereby the APs meet on pre-defined channels and exchange their
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public (wired) IP address. When the APs know the IP address of their neighbors, they
use their backbone connection for the actual collaboration. We implement our complete
algorithm (with neighbor discovery) and observe on our testbed that the optimization
objective, defined by the utility functions employed by the APs, effectively drives the
spectrum allocations in the desired regimes. Furthermore, we also show that the algorithm
naturally load balances the amount of consumed spectrum (in frequency and spatial
domains), as a function of the traffic loads and fairness objectives of the various APs.

We organize the remainder of this chapter as follows. In Section 4.2, we first present
our model and notations. We then present the algorithm itself in Section 4.3, and we
describe its implementation in Section 4.4. We show the results of testbed experiments in
Section 4.5. Finally, we summarize the chapter in Section 4.6.

4.2 Model

We use a BSS-centric model similar to the one presented in Section 2.2. There are however
some slight differences between the two models, and we therefore present all the notations
used in this chapter for completeness. We consider a set of L links and a set A of access
points (APs). Here again, each link [ is composed of one transmitter and one receiver
that operate on the same frequency band (i.e., using the same channel center-frequency
and bandwidth). In this chapter we focus on downlink traffic, in line with asymmetric
domestic Internet connections, where downlink traffic largely dominates [SADF*11]. As
such, we use the terms transmitter and AP interchangeably. Further, we write [ € A if AP
A is serving the receiver of link [. Let F, B and P denote the finite sets of available channel
center-frequencies, bandwidths and transmit powers, respectively. For convenience, we
define C := F x B x P to be the set of possible configurations. For a link [, we denote
by f; € F its channel center-frequency, b; € B its bandwidth, and p; € P the transmit
power used by the transmitter of [. All the links sharing a common AP must use the
same configuration of center frequency, bandwidth and transmit power. We thus define
S C CMI the corresponding set of feasible configurations that satisfy this constraint. We
write ¢4 € C for the spectrum configuration of AP A. We extend this notation to sets,
and we write ¢p € CIP! for the joint configuration of a set D C A of APs.

We say that two APs are neighbors if they are close enough to interfere with each other
(i.e., if there exists a joint configuration (fj, by, pi, fi, bk, Pr) such that some of the links
served by the two APs interfere with each other when operating with this configuration).
We write N4 for the set of neighbors of AP A, and we use the terms neighbor and
interferer interchangeably. This neighborhood relationship defines an undirected neighbor
graph G(V, E), where V.= A and (A, B) € E if and only if APs A and B interfere.
Here too, our interference definition implies mutual neighborhood relationships, i.e.,
B e Ny < Ae Np for any two APs A and B.
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Ui(z1) Ui(z1)

throughput z; throughput z;

Figure 4.1 — Two examples of utility functions U(-). z; is the throughput achieved on
link [. The function on the left can for instance correspond to best effort traffic with
diminishing returns, while the step function on the right implements a tight throughput
requirement, e.g., for voice transmission.

Our goal is to optimize the performance of such a network. We use link utility, a
function of received throughput, as a measure of performance. In particular, we consider
the utility of link [ as given by a function U; : R — R. We thus define Uj(x;) as the
utility of link [ when the throughput achieved on link [ is z;. The utility is an idealized
representation of the satisfaction the link’s user receives as a function of the actual
(application-layer) throughput achieved. The function U; might depend on the type of
traffic and/or the load flowing through I. We illustrate the shape of some possible utility
functions in Figure 4.1. In our testbed experiments of Section 4.5, we focus on a popular
family of concave utility functions that depend on a parameter o € R and are defined as

Uz ) = (1 — a)fla:ll_o‘. (4.1)

These utility functions are known as the a-fairness functions, and they have been defined
in [IMWO00]. When a = 0, we have Uj(x;) = x; and maximizing the sum of the utilities
amounts to maximizing the total throughput of the network. When « increases, the
concavity of the function increases, and maximizing the sum of utilities consists in finding
configurations for which the links achieve increasingly similar performances (thereby
increasing fairness). We assume that both the function Uj(-) and the traffic demand (or
load) of [ are known to the AP of [ (the traffic load is easy to measure at the AP). Although
we consider a-fairness utility functions in our evaluations, our algorithm can accommodate
general utility functions; in particular they need not be concave or continuous.

Our objective is to maximize the global sum of utilities, which corresponds to solving
the optimization problem

maximize ZUZ(JJI) over S, (4.2)
!

where the sum is taken over all the L links. The dependency on the spectral configurations
is captured through the x; variables. In particular, as explained in Chapter 3, the
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throughput achieved on a link [ is a complex function of the spectral configurations,
wireless conditions, and traffic loads of its neighbors. In the next section, we present our
algorithm for the distributed allocation of spectrum configurations.

4.3 Spectrum-Allocation Algorithm

In this section, we assume that each AP is able to communicate with its neighbors using an
out-of-band channel, thus allowing for the exchange of messages regarding configurations
and estimated utilities. We defer the detailed description of how to enable this neighbor
discovery and communication in practice to Section 4.4, where we describe our protocol
design and implementation.

4.3.1 Algorithm Description

As explained in Chapter 1, the optimization problem (4.2) is NP-complete (as it is more
general than a graph-coloring problem). Therefore, we follow an approach similar to
that in Chapter 2, and we devise an iterative approach that converges arbitrarily close
to optimal configurations when the traffic loads and channel conditions are steady. Our
distributed procedure is described in Algorithm 2, from the point of view of an AP A.
Each AP keeps an exponential timer of mean wake-up time 1/\ that is independent
of other APs. The algorithm is run when the timer fires. In this case, AP A first
estimates its potential throughput (its achievable throughput when sending saturated
traffic) for each configuration c4 € C, using some information about its neighbors. This
information consists of the neighboring configurations cyr,, the physical rates currently
used by the neighbors, their traffic loads, as well as the channel gains measured during the
neighbor-discovery procedure. This information is exchanged on demand, only once per
algorithm iteration, among neighboring APs (not shown in Algorithm 2). It is required
by AP A in order to estimate its potential throughput at line 8 of the algorithm, using
one of the model built in Chapter 3.

AP A then calculates U%(cy), the sum of utilities of all links served by A, based on
these estimated throughputs. It then sends a query request (line 11) to all its neighbors for
their own estimated utilities for each configuration c4 (used by A). Let us now consider
how this query is treated when AP A itself receives such a query, as shown starting
in line 18. When AP A receives a query message from a neighbor B, it estimates the
potential throughput for each of its links, for each possible configuration cg € C of B.
Here again, this operation requires that A queries its own neighbors (some of which may
be two hops away from B) about their current configurations, physical rates, traffic loads
and measured channel gains (not shown in Algorithm 2). AP A then computes U%(cp)
as the sum of utilities of all links [ € A for each cg € C, and sends these values to B.
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When AP A receives replies from its neighbors, these values are stored in a matrix U%P,

where Ujb(B ,c4) denotes the estimated utility of neighbor B when A uses configuration

ca. AP A then uses these values to compute U%3°(cy4), the sum of neighbors’ utilities

when A uses configuration ¢4, and U 4(ca), the total estimate of the neighborhood utility,

including A. This value is then used in line 16 to draw a random configuration according

to the Gibbs distribution. Such a random sampling procedure converges to states that are

arbitrarily close to the global optimum of Problem (4.2), as explained in the next section.

Algorithm 2: Generalized spectrum allocation at AP A

W N =

0 I & wm
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23

Initialization:

Set the temperature T > 0

Start with a random generalized configuration cy

Setup an exponential timer with mean wake-up time 1/A

When the timer fires:
for each c4 € C do
for each link [ € A do
L estimate potential throughput Z;(ca Ucp,)
compute UA(ca) = 3 1c 4 Ui (Z1(ca Ucwry))
for each neighbor B € Ny do
L send a query_u message to B

Upon reception of a reply_u message from neighbor B, fill matrix U%P, where
Uﬁb(B ,c4) is the estimate utility of neighbor B when A uses configuration c4

for each c4 € C do
compute ULP(c4) = Y BN, U4° (B, ca)
compute U4(cq) = UA(ca) + Ui (ca)

draw a new configuration ¢4 € C at random, with probability
exp (04(ca)/T)
u,ecexp (U4(e4)/T)

P(ca) =

reschedule the timer

Upon reception of a query_u message from a neighbor B:
for each cg € C do
for each link [ € A do
L estimate potential throughput #;(ca U cp U car,\B)

compute UA(cp) = > e 4 Ui (#1(ca Ucp U CNA\B))

send a reply_u message that contains the set {U”(cp) V e} to B

67



Chapter 4. A Utility-Optimal Collaborative Spectrum-Assignment
Algorithm

4.3.2 Configuration Sampling

We now show that our algorithm converges to utility-optimal allocations. The reasoning
is very similar to that of Theorem 1 of Chapter 2 and it relies on the standard framework
of Gibbs sampling. We therefore give only a brief outline of the convergence guarantees
(rigorous convergence analyses can be found for similar settings, see for instance [BMS11]).
Denote by C),, € § the global state of the network at the n-th iteration of the algorithm.
Each AP independently selects a configuration at the ticks of an exponential timer, based
only on the current information that it receives from its neighbors. C), is thus a Markov
chain, whose transitions from one state to the next are specified by the Gibbs distribution
in line 16 that depends only on the sum of utilities in a given neighborhood. The transition
probabilities are such that C,, is reversible and thus converges in distribution, at geometric
speed, to the stationary distribution with measure 7 given by

7(C) o exp <W> (4.3)

for a given global state C' € S§. This distribution has the same form as the limiting
distribution of Theorem 1, and it is also parameterized by a temperature parameter 7.
Here too, for sufficiently low T, the distribution assigns arbitrarily large probabilities to
the states that are the global optima of Problem (4.2). To observe that Equation (4.3) is
indeed the stationary distribution of the chain, we can use a similar method as in [BMS11|
and consider an augmented graph G’(V, E’), which is the original neighborhood graph
G(V, E) with an edge added between two nodes that are two hops away from each other.
We can then apply the Gibbs-Markov equivalence [Bre01] on this augmented graph, where
the sum of potential functions over the cliques of the graph corresponds to the sum of
utilities in the AP neighborhoods (that is, Ua(c4) for AP A). Each clique of the graph
G’ thus separately contributes to achieving convergence to states where the global sum of
utilities is maximized.

4.3.3 Selfishness

In order to appeal to the Gibbs-Markov equivalence and to obtain convergence guarantees
for arbitrary utility functions, we consider the sum of utilities in the AP’s neighborhood
for taking a spectrum allocation decision (in line 15). This implicitly embeds a notion of
equity in how the neighbors’ utility is taken into consideration, and it assumes that all
the APs are willing to collaborate and follow the protocol.

In order to study situations where the APs might depart from the protocol, we now
introduce a selfishness parameter, 5, that controls this equity by letting each AP weigh
its own utility and those of its neighbors. Note that this is orthogonal to the notion of
fairness among links implied by the a-fairness utility functions. In a general manner, 3
should be seen as a weight given to the utilities of the various APs. We thus redefine
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U4(c4) (computed in line 15) as a weighted sum:
U4(ca) =2 (BU*(ca) + (1= B)US(ca)) (4.4)

where 0 < 8 < 1. When = 0.5, Equation (4.4) boils down to our utility-optimal mecha-
nism (i.c., in this case U%(c4) is equal to the value computed in line 15 of Algorithm 2).
When £ # 0.5, the behavior differs from that defined in Algorithm 2. For § — 1, the AP
puts more weight on its own utility U4(c4) and is thus increasingly selfish. Conversely,
for 8 — 0, the AP puts more weight on its neighbors’ aggregated utility and is thus
increasingly altruistic. With 8 # 0.5, we can no longer claim reversibility of the Markov
chain C), and the convergence to globally optimal states is not guaranteed. Nevertheless,
considering different values for 8 enables us to investigate experimentally the effect of
selfish APs on the achieved global throughput and on convergence. We evaluate our
algorithm with different 8 values in Section 4.5.

4.4 Implementation

In this section we briefly describe the implementation of our algorithm, including the
accompanying neighbor-discovery protocols required for the local collaboration.

4.4.1 Overall Description

We implemented the distributed algorithm, throughput prediction module, as well as the
neighbor AP and client discovery procedures (described below) in about 3500 lines of
C++ code, mainly in the form of new elements of the Click modular router [KMC*00] in
userspace. This code runs at the APs. The clients are only modified to react to changes of
spectral configurations selected at their APs; these changes are announced with dedicated
beacons. To ensure the accuracy of time-dependent functions, all the control packets
sent by the algorithm on the wireless medium (i.e., the neighbor-discovery frames, and
the frames sent to clients for discovery and configuration changes) are prioritized over
best-effort traffic and use a different MAC queue (similar to the technique employed by
SAW in Section 2.5). For the throughput predictions (in lines 8 and 21 of Algorithm 2),
we wrote the code to generate predictions that use a learned model based on SVR (as
presented in Chapter 3).

4.4.2 Neighbor Discovery

Our spectrum-assignment algorithm is collaborative and thus requires information ex-
change between neighboring APs that do not necessarily operate on the same frequency
band. Furthermore, at a given AP, the models for throughput prediction described in
Section 3 need to know the channel gains between this AP and its neighboring APs
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and their clients. We therefore design two accompanying protocols for discovering the
neighboring APs and their clients, and for measuring the corresponding channel gains.

Neighboring Access Point Discovery

This protocol is a rendez-vous based procedure. The APs periodically meet on a pre-
determined frequency band and each AP broadcasts a dedicated packet containing its
public (WAN) IP address. Each AP uses the default narrowest bandwidth (20MHz in our
802.11n implementation) and the maximum transmit power to ensure that a maximum
of neighboring APs receive this transmission. The neighboring APs’ IP addresses are
then used to contact them over the wireline network to exchange further information
(e.g., when announcing client discovery as described below, or when querying for utilities
or configurations as described in overall in Algorithm 2). If the APs belong to a single
administrative domain, they can use their local backbone network for collaboration. In
contrast, if the APs belong to different administrative entities, they can use their Internet
connection for collaboration.

In addition to the IP address, each receiving AP records the received signal strength
(RSS) from its neighbors. The APs are assumed to have synchronized clocks by using a
protocol such as the network time protocol (NTP), and the meeting time is determined
using a modulo of the Unix time (in seconds) with the number of available rendez-vous
channels. Similarly, the channel center-frequency for each meeting is determined by a
modulo of the time with the channel index, which results in an iteration over available
channels. This iteration is useful because it keeps the APs from getting stuck in a
dedicated channel that may be poorly suited for this IP exchange because of factors such

as heavy external traffic load.

Similarly to the micro-sensing operation described in Section 2.3.2 of Chapter 2,
switching to the rendez-vous channel temporarily prevents the APs from sending or
receiving traffic to/from their own clients. For this reason, on the one hand, the discovery
periods need to be kept as short as possible, so as not to disrupt any time-sensitive
traffic. On the other hand, this duration must be sufficiently long to let the APs to
meet despite synchronization errors'. The time required to send the discovery frames is
negligible (< 1 ms, even when using low physical rates and a narrow bandwidth), and so
is the time required to switch back and forth to the discovery band using recent wireless
chips®. However, in the Internet, it has been observed that most NTP-synchronized clocks
are within 21 ms from reference time, and all are within 29 ms on average [MTH97|.

"We send one discovery frame at the beginning of the period and one at the end, to ensure success in
case of minimal overlap.

2For example, as mentioned in Chapter 2, Atheros reports switching times of 2 ms for its 802.11a/b/g/n
AR9390 chipset. See: http://www.qca.qualcomm.com/wp-content/uploads/2013/11/AR9390.pdf. In
particular, in this chapter, we ignore the fact that our own hardware has relatively long switching times,
and rather focus on the ideal performance that can be obtained with recent wireless chips.
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Therefore, the discovery duration should be governed by the synchronization accuracy.
In our implementation, we use a discovery duration of 50 ms, which ensures a good
discovery probability, even for the worst cases where two nodes both have a time offset of
20 — 30 ms. Such a duration is also compatible with most delay-sensitive traffic. But,
if such a duration happens to be detrimental to QoS, the APs are still free to skip the
discovery operations scheduled while they are serving delay-sensitive traffic. This would
come at the price of delaying the convergence process of the algorithm, but would not
otherwise affect performance. Finally, although our reasoning follows a worst-case scenario
where the APs are synchronized remotely over the Internet, let us mention that we could
expect in practice that nearby neighboring APs have relatively low RTTs. The time
synchronization can then be expected to be more accurate; the ideal scenario being when
the APs use a local network for collaboration, in which case they can obtain a much
tighter synchronization and further reduce the time spent out of their operating band.

Neighboring Client Discovery

We propose a protocol that enables the APs to measure the channel gains between
themselves and the neighboring clients, without modifying the client devices. The
protocol works as follows. Directly following an AP discovery procedure, each AP
announces the time for its own next client-discovery session to all its neighboring APs.
This client-discovery session consists of the AP sending an empty unicast frame to each of
its clients. Contrary to rendez-vous based AP discovery, the AP uses its current operating
spectral band (channel center-frequency and bandwidth) for this procedure so that it
does not require client-side modification. This band information is therefore included
with the time announcement. All neighboring APs that have tuned to this spectral band
at the announced time can then observe the corresponding MAC-layer ACK packets
sent by the clients and record the corresponding RSS values. Note that the neighboring
APs do not need encryption information in order to measure these packets’ RSSs with a
virtual interface in monitoring mode. The frequency of the client-discovery sessions is a
configurable parameter. In our implementation, we choose a random time between every
second and every third AP discovery session. The moving averages of the RSS values
recorded during these two discovery procedures are used by the AP and its neighbors to
compute the various channel gains shown in Figure 3.5 of Chapter 3, which in turn are
used as inputs of the throughput prediction module. In this context, filtering with moving
averages mitigates the effect of noisy RSS measurements on throughput prediction.

4.5 Testbed Evaluation

In this section, we first describe our experimental settings and methodology, and we then
analyze the results obtained on our testbed.
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4.5.1 Experimental Settings and Methodology

We employ the testbed described in Appendix A with 802.11n. We use 20 and 40 MHz
channel bandwidths (which are the legacy bandwidths with 802.11n), 2 x 2 MIMO, and
10 different transmit power values in the set {3dBm, 5dBm ,...,21dBm}. We make our
experiments in the 5.735-5.835 GHz band, which comprises a total of 100 MHz of spectrum
(namely, five channels of 20 MHz). We randomly select between 8 and 10 AP-client pairs
among the 22 nodes of our testbed. Each pair starts in a random configuration of center
frequency, bandwidth and transmit power. We conduct our throughput measurements
using UDP traffic generated by iperf, with packets of 1500 B. After 600 seconds, we
start our algorithm at each AP for 3000 seconds. Unless otherwise stated, the results
shown on the plots are the averages and standard deviations obtained over 10 such runs.
For the algorithm execution we set temperature 7' = 0.01 and the average wake-up time
A = 600 seconds. We use the a-fairness utility functions defined by Equation (4.1) with
a € {0,1,4}, thus yielding the following link utility functions:

e o = 0. In this case, we have Uj(z;) = 2;. When all links use this utility function,
the optimization problem (4.2) boils down to the maximization of the sum of
throughputs, irrespective of other considerations such as fairness.

e o = 1. In this case, we have Uj(x;) = log(z;). Using this function is equivalent to
maximizing proportional fairness. The goal of such an optimization objective is to
provide a trade-off between efficiency and fairness by allocating more resources to
links with larger potential throughput.

e a = 4. In this case, we have Uj(z;) = —2;°/3. This function represents a
compromise between proportional fairness and max-min fairness. Increasing «
corresponds to increasing the weight put on fairness in the optimization objective.
Therefore, this function is the fairest of the three functions that we consider.

4.5.2 Comparison with [KBC*07]

We benchmark our algorithm against the one proposed in [KBC107]. This algorithm
uses a Gibbs sampler to find configurations that minimize the overall interference. As
its original version samples channel center-frequencies only, we “augment” it to sample
bandwidths and transmit powers as follows. We modulate the power received by a node
a from a node b by (i) the transmit power used by b and (ii) the overlap between a’s
receive spectrum mask and b’s transmit spectrum mask (see [MSBAO06]), assuming perfect
band-pass filters. Overall, this benchmark is useful for comparing how our algorithm
performs in comparison to an algorithm that considers only the unilateral objective of
minimizing interference (and not maximizing capacity — see Section 1.1.1). We run the
algorithm [KBCT07] (with our augmented metric) offline, using the whole testbed channel
gains matrix in input, for 1000 iterations. The resulting allocations are denoted K+, and
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are run for 1000 seconds in our testbed. This is repeated 10 times to obtain confidence
intervals.

4.5.3 Results

We now present our experimental results. We first evaluate our algorithm in terms of
convergence and performance. Next, we test the generality of the optimization criteria by
studying the performance, in terms of throughput and fairness, using our different utility
functions with the different values of «. Finally, we explore the interplay of the various
parameters by examining the selected spectrum allocations for different utility functions,
selfishness parameters, and traffic loads.

Convergence and Performance

Figure 4.2 shows the temporal evolution of the average total sum of throughputs, when all
links use o = 0, as well as the average sum for K+. We observe that K+’s single criterion
that consists in reducing interference does not result in significant throughput gain over
random configurations in this case. This is because the K+ algorithm favors narrow
channel widths and lower transmit powers in the case of channel overlap, which might
not be beneficial in general. In contrast, we observe encouraging results for our algorithm.
After it is started, the system converges to total throughputs that are about 30% higher
than those of K+ or when random configurations are used. In addition, convergence
happens fast, on average in less than two iterations of the algorithm per AP3.

It is difficult to compare these results against those obtained by SAW in Chapter 2.
SAW was tested with 802.11g in the 2.4 GHz spectrum band that contains only 3
orthogonal 20 MHz bands. In contrast, the present results are obtained using 802.11n
on a spectrum band that contains 5 orthogonal bands of 20 MHz*. Therefore, using
random spectrum-allocations performs better on average in the present case (as random
allocations are less likely cause interference when more spectrum is available).

Selfishness

We designed our algorithm assuming collaborative APs, but it is informative to investigate
the potential effect that APs behaving selfishly or altruistically (i.e., using 5 # 0.5 in
Equation 4.4) might have on the overall performance. To this end, we consider three values

3The first iteration happens on average at 1200 seconds, and the second iteration on average at 1800
seconds.

4 Unfortunately, we were not able to implement the micro-sensing procedure described in Chapter 2
for 802.11n, and therefore we cannot directly compare the present results with those obtained with SAW.
Furthermore, SAW does not allocate transmit powers and its optimization objective does not immediately
extend to this additional parameter.
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Figure 4.2 — Sum of all links throughputs as a function of the time. Our algorithm starts
at 600 seconds and runs with a« = 0. The K+ line denotes the average total throughput
obtained with the augmented algorithm of [KBCT07] described in Section 4.5.2.
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Figure 4.3 — Sum of throughputs for different values of the selfishness parameter 5.
In this setting, the sum of throughput is not affected when each AP is completely
selfish (8 = 1), whereas altruistic behavior (5 = 0.25) has a negative effect onto global
performance.

of the selfishness parameter 3 defined in Section 4.3.3. We use 8 = 0.5 (the default value
for which our algorithm is shown to be utility-optimal), 5 = 1 (completely selfish APs)
and = 0.25 (where each AP is more altruistic and puts more weight on maximizing its
neighbors’ utilities than its own). Figure 4.3 shows the temporal evolution of the sum of
throughputs for the different levels of selfishness. We observe that networks with altruistic
APs achieve limited overall throughput improvements compared to when they adopt
higher values of 5. Altruistic APs appear indeed to under utilize the available spectrum,
which penalizes the overall throughput. However, there is no noticeable difference beyond
certain values of 5, suggesting that selfishness does not decrease the overall throughput
in this case. This result is similar to those observed for SAW in Section 2.4.6: Even if the
APs behave selfishly, they still tend to employ configurations that do not significantly
penalize their neighbors; because mitigating interference is often mutually beneficial.
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Figure 4.4 — Throughput and fairness for a-fairness, with « =0, « =1 and a = 4. We
also show the results for random configurations, the K+ algorithm, and our algorithm
with a = 0, but using an measurement-fitted SINR model instead of a learned model for
estimating throughput.

Comparison of Utility Functions

We now compare the performance obtained with various utility functions. We conduct
experiments where all the links use « = 0, @« = 1 and o = 4. We measure the resulting
fairness using Jain’s index, by computing

(> @)’

Lo ()

where x; is the measured throughput obtained by link [. Figure 4.4 shows the average
throughput and fairness obtained with the various utility functions. In order to evaluate
the system in steady state, the statistics are obtained over the last 1000 seconds of each
test run. We observe that all utility functions perform well both in terms of fairness
and throughput, in comparison to K+ or random configurations. Notably, our algorithm
adapts well to the various utility functions: o = 0 provides the greatest throughput, and
increasing « improves fairness. In line with theoretical expectations, a = 4 provides
slightly better fairness and lower throughput than o = 1. To the best of our knowledge,
this is the first time that utility-driven optimization is employed for spectrum allocation
in a real network.

In this resource-allocation context, it turns out that our throughput prediction
technique, introduced in Chapter 3, is instrumental in achieving good performance. In
Figure 4.4 we also plot the throughput and fairness for @ = 0, obtained when using a
measurement-seeded SINR model (denoted “SINR”). Our algorithm with the learned
throughput prediction module significantly outperforms the instance running with the
SINR model, both in terms of throughput and fairness.
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Figure 4.5 — CDF of transmit powers sampled with different utility functions, and
different degrees of selfishness (when not indicated, (3 is set to 8 = 0.5). The APs use
low transmit powers when the utility functions privilege fairness or when they behave
altruistically.

Selected Configurations

We now examine the configurations that are selected by our algorithm under different
scenarios. In Figure 4.5, we show the CDF of the transmit powers selected by our
algorithm, for the different utility functions and two different values of the selfishness
parameter 3. As could be expected, altruistic APs (using 8 = 0.25) tend to use low
transmit powers, whereas selfish APs (using f = 1) almost always use the maximum
transmit power. More notably, it turns out that this trend is also present when the APs
change their fairness objectives: fair utility functions tend to use lower transmit powers
for a higher fraction of the time (see e.g., @ = 4 vs. &« = 0). Overall, these results indicate
that the selected transmit powers are directly determined by the fairness objectives, even
though our algorithm optimizes high-level functions of performance (which is itself an
intricate function of the employed configurations).

For studying the effect of traffic load, we perform experiments where each link has a
traffic load randomly chosen between 10 and 80 Mbps. In these experiments we take the
traffic load into account by using the utility functions Uj(x;) = min{z;/load;, 1}, where
load; is the load of link /. In addition, we also consider situations where all links have
a load of 100 Mbps, which corresponds to a backlogged situation. In this particular
case, the employed utility function is equivalent to maximizing throughput (that is, using
a = 0). In Figure 4.6, we show the proportion of time that our algorithm chooses to
use a 40 MHz channel bandwidth (on the left y-axis), and the average transmit power
in dBm (on the right y-axis), as a function of traffic load at the AP that makes these
choices. We observe that APs with heavier loads tend to use wider channel widths and
larger transmit powers on average. This demonstrates a natural load balancing across
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Figure 4.6 — Proportion of time that a bandwidth of 40 MHz is sampled and the average
sampled transmit power, as a function of the AP traffic load.

these parameters: the APs with heavier traffic loads naturally consume more spectrum,
both in frequency and spatial domains. This is indeed a desirable feature [MCW™0§],
and it confirms the ability of the throughput prediction modules built in Chapter 3 to
suitably adapt to traffic load.

In contrast, when all APs generate 100 Mbps of load (last column, labeled “all 100” in
Figure 4.6), the APs lower their resource consumption in spatial and frequency domains,
compared to cases with heterogeneous loads. This is because, in these cases, heavily-loaded
APs must share resources with other heavily-loaded APs. Indeed, instead of competing
with each other, these APs collaborate to share the spectrum equitably. We thus deduce
that the various utilities, fairness objectives and traffic loads directly impact the spectrum
allocation patterns. In particular, both transmit power and channel bandwidths are used
to load-balance the spectrum usage as a function of the optimization criteria.

4.6 Summary

In this chapter, we have presented an algorithm for the joint allocation of channel center-
frequency, bandwidth and transmit power. Contrary to the algorithm of Chapter 2, this
algorithm optimizes explicit formulations of the final performance. As a result, it accepts
a wide range of optimization criteria (specified in terms of utility functions) that, in
turn, directly determine the aggressiveness and efficiency of the configuration chosen by
the nodes. In particular, the channel bandwidth and transmit power both determine
the intensity of spectrum access, in frequency and spatial domains, respectively. These
parameters are transparently adapted to provide natural load-balancing among access
points subject to different traffic loads. As the effect of the various parameters and traffic
loads on final performance is very intricate, the models that we built in Chapter 3 appear
to be instrumental in achieving good performance and load-balancing properties.
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Chapter 4. A Utility-Optimal Collaborative Spectrum-Assignment
Algorithm

In order to implement the direct performance-driven optimization proposed in this
chapter, the APs need to exchange some control messages with their physical neighbors.
In order to make it practical, we have proposed an accompanying AP- and client-discovery
protocol, whereby neighboring APs can learn their mutual public IP addresses and use
their backbone wired connection as a control channel. This approach is sufficiently general
to be implemented by networks belonging to separate administrative entities that have
access to an Internet connection. As such, it can represent a useful building block for

other kinds of collaborative tasks requiring control traffic.
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Scheduling in Time and Frequency

Domains

5.1 Introduction

In the previous chapters, we have considered scenarios where the APs repeatedly re-
evaluate the spectrum band on which they operate. This constitutes a first step in order to
depart from the traditional “fully reserved” view of spectrum assignment, which is typically
used in today’s networks, and where a channel is chosen once and for all. However, due to
practical constraints, the algorithms presented in the previous chapters still change their
operating band only relatively infrequently — typically every few minutes —, compared to the
much shorter timescales at which traffic dynamics might vary. In this chapter, we consider
the spectrum-assignment problem in the context of flexible channelization, whereby
the spectrum consumed by each station can be adapted on a per-frame basis. Recently,
significant progress has been made in system design, showing that flexible channelization is
feasible in practice [RSBC11, TFZ*10, YHC*10, CRB*12, CLL*12, YKQ13|. Compared
to the algorithms presented in the previous chapters, flexible channelization further departs
from the reserved view of spectrum management. In this chapter, we view the spectrum-
assignment problem as a scheduling problem; the stations have to decide at what time
and on which frequency band each frame should be sent.

Flexible channelization has the potential to provide several important advantages.
First, adapting the spectrum consumed by each frame obviously removes the need
for other spectrum-assignment algorithms acting at slower timescales. Second, adding
frequency-domain decisions to the scheduling process can mitigate the severe time-domain
overheads of 802.11, which are exacerbated by recent PHY layers. Third, as already
mentioned, modulating the spectrum on a per-frame basis departs from the usual static
channel assignment perspective and enables spectrum-allocation schemes to finely adapt
to instantaneous traffic loads.

Despite important promises in terms of performance improvements, finding efficient
schedules in time and frequency domains is difficult. Similarly to the algorithms presented
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in the previous chapters, it requires that the stations reach some level of coordination in
order to efficiently balance a minimization of interference with a maximization of spectrum
usage (see Section 1.1.1). This is challenging, because for each frame the stations need
to choose “time-spectrum blocks” that (i) do not overlap (to avoid interference) and (ii)
consume as much of the available spectrum as possible (to maximize performance). For
this reason, to the best of our knowledge, all schemes for flexible channelization that
have been proposed so far rely on different forms of explicit signaling, synchronization,
spectrum scanning or central control, in order to coordinate neighboring stations and
efficiently organize transmissions (see e.g., [MCWT08, TFZ*10, FZD15| — so do more
traditional spectrum assignment schemes operating at slower timescales, such as those
proposed in the previous chapters).

In this chapter, we propose a new approach for scheduling packets in time and
frequency, which is completely decentralized and requires no synchronization, explicit
signaling, control traffic, nor spectrum scans. We propose TF-CSMA /CA (CSMA/CA
in time and frequency domains), which is an extension of the time-domain CSMA /CA
backoff mechanism of 802.11 to the frequency domain. In addition to the contention
window and backoff counter used by 802.11 in the time domain, TF-CSMA /CA also
adjusts dynamically the channel bandwidth and center frequency used for each frame,
both of which determine the spectral-domain behavior. When a station is involved in a
collision, it hops to another spectrum band and (with a certain probability) decreases
both its time-domain aggressiveness and its (average) spectrum consumption. In contrast,
when a station experiences a successful transmission, it sticks to its current spectrum
band with a large probability, and it increases its (average) spectrum consumption with a
small probability.

TF-CSMA /CA respects the design and engineering principles of 802.11: it is a purely
random access mechanism that adapts its time-spectrum aggressiveness based only on
transmission outcomes (collisions or successes) and carrier sensing. Although the proposed
additional decision rules are relatively simple to describe, we will see that they produce
non-trivial self-organizing behaviors, whereby stations avoid interference while efficiently
using the available spectrum in both time and frequency domains.

Compared to time-domain random access, TF-CSMA /CA provides several important
advantages. First, it drastically reduces the inefficiencies caused by the recent PHY
layers of 802.11n and 802.11ac. As already mentioned in Chapter 1, these amendments
can deliver up to multi-gigabit raw transmission rates at the physical layer, by using
techniques such as MU-MIMO, aggressive modulations, and larger channel bandwidths
(up to 40 MHz for 802.11n and up to 160 MHz for 802.11ac). Although these techniques
drastically reduce the time required to transmit a frame, they also increase correspondingly
the time-domain overheads due to backoff, acknowledgments, PHY-layer headers, and
other MAC overheads (as we will explore in detail in the next section). To mitigate this,
802.11n and 802.11ac amendments have the ability to use frame-aggregation mechanisms
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to increase transmission durations. The sizes of the aggregated frames can reach up to
65 kB for 802.11n and up to 4.5 MB for 802.11ac [Gasl3|. Although heavy aggregation
has the potential to increase efficiency, it does not help applications producing chatty
traffic, or real-time traffic such as video, VoIP or gaming, which cannot afford to wait for
large buffers to fill up. In contrast, TF-CSMA /CA drastically reduces these inefficiencies,
by (i) reducing the channel width in case of interference (thus reducing the fraction of time
consumed by overheads, as reducing the bandwidth increases the transmission duration
while maintaining the same overheads) and (ii) being much more aggressive in the time
domain (it is able to use minimum contention windows as low as CW,,;,, = 2 while
maintaining excellent fairness and small collision probabilities, compared to CWp,;,, = 16
with current 802.11).

In addition to improving efficiency, TF-CSMA /CA also serves to solve the spectrum-
assignment problem addressed in previous chapters at slower timescales. In this context,
note that 802.11ac is capable of using different channel widths of 20, 40, 80 and 160 MHz
and can decide to use channel bonding on a per-frame basis. However, this decision
amounts only to deciding whether to employ or not the non-primary channel, and it offers
only limited additional flexibility because the primary channel remains fixed. In fact,
802.11ac is known to require very careful spectrum planning in order to manage interference
when large channel widths are employed [Gas13]. TF-CSMA/CA finds interference-
free schedules and spectrum allocations directly at the MAC layer, as determined by
instantaneous traffic loads. To the best of our knowledge, TF-CSMA /CA is the first
mechanism to extend the backoff mechanism of 802.11 to the frequency domain.

We organize the remainder of this chapter as follows. In the next section, we give
some background on the time-domain CSMA /CA mechanism used by 802.11, and explore
some tradeoffs involved with packet scheduling. We present TF-CSMA /CA in Section 5.3.
In Section 5.4, we analyze TF-CSMA /CA and show that it converges to interference-free
spectrum allocations. Then, in Section 5.5, we use packet-level simulation to evaluate
the performance of TF-CSMA /CA both in terms of throughput and short-term fairness,
in a wide variety of settings. Finally, we present related work in Section 5.6 and give
concluding remarks in Section 5.7.

5.2 Background and Motivation

5.2.1 The IEEE 802.11 Distributed Coordination Function

To arbitrate transmissions and avoid collisions, 802.11 specifies a distributed coordina-
tion function (DCF) based on CSMA/CA. When a station receives a new packet for
transmission from the upper layer, it selects a backoff counter BC uniformly at random
in {0,...,CW — 1}, where CW denotes the contention window and is initially set to a
minimum value CW,,;,. The backoff mechanism employs a discrete time scale; for each
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Figure 5.1 — Normalized throughput of the 802.11 DCF as a function of the PHY rate,
for several frame sizes (left) and different numbers of stations N (right). The results on
the left subplot are computed analytically for N = 1. The results on the right subplot
are obtained by simulation with frames of 1 kB. We also show the rates employed by
802.11b/a/g/n/ac (delimited by vertical lines).

time slot during which the medium is sensed to be idle (i.e., below the carrier-sensing
threshold), the station decreases its backoff counter BC by 1. When the medium is
sensed busy, the station freezes its backoff counter until the medium is sensed idle again
for a duration equal to DIFS (DCF Interframe Space). The station transmits when the
backoff counter reaches 0. If the destination station successfully receives the frame, it
waits for a duration equal to SIFS (Short Interframe Space) and replies with an ACK. If
there is a collision (detected by a missing ACK), this is interpreted as contention and the
transmitting station reduces its aggressiveness by doubling CW (up to a CW,,, value).

It then repeats the process.

The time-slot duration has to last long enough for reliable carrier sensing to be
performed (i.e., measure the energy level), for the RF front-end to be switched from
receiving to transmitting, and for possible propagation delays to be accounted for. It
appears that these durations are mostly incompressible; the 802.11a/g/n/ac amendments
have been using time-slot durations given by tgot = 9 s for more than a decade. Similarly,
SIFS needs to account for the time required for the incoming frame to be processed
and for the mode of the RF front-end to be switched, in order to transmit the ACK.
802.11a/n/ac use SIFS durations given by tgips = 16 us. These time constraints also
propagate to DIFS, which is set to SIFS + 2 time slots and is equal to tprrg = 34 us for
802.11a/n/ac. Finally, each frame starts with the transmission of a PHY preamble, which
is required to detect and to decode frame transmissions, as well as to set the spectrum
and modulation parameters. In total, 802.11ac uses PHY preambles lasting for durations
of tpry = 44 us [Gas13|!.

Let us define the (normalized) throughput (or efficiency) of a medium access control
protocol as the product of (i) the fraction of time and (ii) the fraction of spectrum that

"We neglect the overhead of MAC headers, as those are transmitted at much higher rates.
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are used for successful transmission of payload traffic. For example, a protocol that
successfully transmits payload bits on 50% of the spectrum for 50% of the time has a
normalized throughput of 25%. As 802.11 uses 100% of its channel, its efficiency is only
determined by its time-domain operation. To analyze the efficiency of 802.11 as a function
of the PHY rate, we can adopt a simple analytical model like the one proposed by Tan et
al. [TFZ*10]. When there is only one transmitting station (and thus no collision), the
average value of BC, which we denote by BC, is given by BC = (CWi, — 1)/2. We
can thus easily compute the normalized throughput as

tdata
tpirs + BClgiot + tpay + tdata + tsIFs + LACK

efficiencygys 11 =

where tqat, denotes the time required to transmit the payload and tpck is the total time
required to send the ACK. In Figure 5.1 (left), we show this throughput for different
packet sizes as a function of the physical data rate?. Although faster transmission rates
reduce the total time required for transmitting a frame, they exacerbate the time-domain
overheads explained above: when sending 1 kB frames with a PHY rate of 600 Mbps
(the maximum rate achievable with 802.11n, but well below the rates achievable with
802.11ac), the efficiency is below 10%. This is also true when the number N of contending
stations is larger, as shown in Figure 5.1 (right) using simulation results (we give more
details on our simulator in Section 5.5).

5.2.2 Improving Efficiency

We now present two techniques for improving efficiency, which are used by TF-CSMA /CA.

Reducing Backoff Durations

Current 802.11 amendments use CW,,;, = 16. One obvious solution for improving
efficiency is to reduce the overhead due to the backoff process, by employing smaller
contention windows (i.e., smaller CW,,;;, values). Of course, there are good reasons for
employing a reasonably large C'W,,;,. If the stations transmit too aggressively, they can
increase the collision probability (harming the overall efficiency) and even cause starvation.
To illustrate this, consider the example depicted on Figure 5.2 with IV = 2 stations using
CWiin = 2. Such small contention windows cause a high number of collisions during the
initial transmission attempts, and then they create a bi-stability effect, whereby one of
the two stations monopolizes the channel for long durations.

This bi-stability effect induces poor short-term fairness (i.e., fairness evaluated on
short time horizons), as some stations might starve for long durations before successfully
sending a packet. In order to quantify this short-term (un)fairness and starvation effect,

2We use tack = 19ps.
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Figure 5.2 — Example of starvation with CW,,;, = 2. Repeated collisions lead to
the rapid increase of the contention window of station v. There is a large number of
collisions during the initial attempts, but station v becomes less and less likely to attempt
a transmission. On average, it can thus take a long time until v experiences a successful
transmission. When this happens, the situation might reverse and u might in turn have
to wait a long time before experiencing a successful transmission.

we define the inter-transmission time IT X as the time duration between two successive
successful transmissions of a given station. A scheduling algorithm is perfectly short-term
fair (and prevents starvation) if I7TX is constant and equal for all transmissions. We can
therefore use the standard deviation of IT'X (over all inter-transmissions of all stations)
as a measure of unfairness, which we call oyrx. The larger o;rx is, the less the protocol
is short-term fair, and the more likely it is for the stations to experience starvation?.
In Figure 5.3, we show o7, as well as the normalized throughput, for several values
of CWipuin with 802.11 and N = 5 stations. With the default CWy,;,, 802.11 gets a
throughput of about 6.7%. The throughput can be increased to more than 10% by
decreasing CW,,;n. The cases with small CW,,;,,, however, correspond to situations
where a station monopolizes the medium for long durations (indicated by large orrx
Values)4. In the extreme cases where CWy,;,, < 4, some stations could not experience
any successful transmission at all during the whole simulation time (which is set to one
second in this case).

30ur measure of short-term unfairness follows closely the proposals made in previous studies on
MAC layer short-term fairness; they also use inter-transmission times [BSDG'04]. Note that short-term
fairness implies long-term fairness (which is measured in terms of the throughput received over long time
intervals), whereas the converse is not true.

*We use CWinar = 1024 in these experiments. Reducing CWi,az together with CWiin (i.e., by using
a fixed number of backoff stages) increases collision rates and produces worse throughputs than the
default configuration.
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Figure 5.3 — Variation of the inter-transmission durations and throughput as functions
of CWinin, for 802.11 with N = 5 stations sending frames of 1 kB, using a PHY rate
of 600 Mbps. The hatched region (CWy,;, < 4) corresponds to complete starvation,
where some stations could not experience a single successful transmission over the whole
simulation time.

Using Narrow Channels for Multiple Stations

Even with dangerously small CW,,;, and backoff durations, 802.11 still obtains relatively
low efficiencies (about 10% for the example shown in Figure 5.3). A solution to further
improve efficiency is to reduce channel bandwidths; narrow channels require longer
durations to send a given number of payload symbols and thus amortize the time-domain
overheads. This idea was previously proposed by Chintalapudi et al. [CRBT12] and others.
Note, however, that for a single station, simply dividing a wide-band channel into several
narrow-band channels to send several longer frames effectively requires buffering more
payload bits. In this respect, it is equivalent to performing aggregation on the original
wide-band channel. However, when multiple stations compete for access, it is possible to
increase efficiency by having each station transmit in parallel on different narrow bands
(without requiring more payload to be buffered).

In the remainder of the chapter, we show that it is possible to implement the two above-
mentioned solutions (reduction of backoff durations and narrow channels for multiple
stations), by extending the contention-resolution process to the frequency domain. Backing
off in the frequency domain enables TF-CSMA /CA to use very small CW,,;, values
and reach efficiencies much higher than 802.11 (or any other time-domain scheduling
mechanism), while maintaining excellent fairness and removing the starvation problem
existing for 802.11 with small CW,;, values. Overall, when N = 1, the efficiency
gain comes only from a reduction in backoff duration. When N > 1, the gain comes
from a combination of reduced backoff durations and reduced overheads over narrower
bandwidths. Interestingly, we will see that when N > 1, the stations naturally converge
to operating points where they use an average amount of spectrum proportional to 1/N —
without knowing the number of stations N.
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5.3 Scheduling in the Time and Frequency Domains

We now present TF-CSMA /CA. We start by introducing some necessary notations, and
then present the algorithm itself.

5.3.1 Settings and Notations

We assume that the stations use a flexible baseband design such as the one proposed
in [YKQ13|, which lets the receivers detect the center frequency and bandwidth used by
incoming transmissions (e.g., using PHY-layer preambles) and process frames accordingly.
We focus on the case where the stations use contiguous chunks of spectrum (i.e., without
fragmentation), which is simpler in terms of system design. Hence, with TF-CSMA /CA,
in addition to its contention window CW and backoff counter BC, each station also
maintains its current center frequency C'F and bandwidth BW. These parameters are the
spectrum parameters used at any point in time for packet transmissions and carrier sensing.
To describe spectrum constraints, we denote by CF gy the set of center frequencies that
can be used with a given bandwidth BW (for example, in the 5.17-5.33 GHz band, we can
have CF160 Muz = {5-25 GHz} and CFgp mu, = {5.21 GHz, 5.29 GHz}, etc.). We write
BW i, and BW,,,4, for the minimum and maximum available bandwidths, respectively
(e.g., in 802.11ac settings, we can have BW,,;,, = 20 MHz and BW,,4, = 160 MHz). For
simplicity of exposition, we assume throughout the paper that bandwidths are powers
of 2, so that switching to the next larger (resp. next smaller) bandwidth is obtained by
multiplying (resp. dividing) the current bandwidth by 2 (in a similar way as CW for
802.11). Finally, TF-CSMA /CA employs a value of CW,,;,, that depends on the current
bandwidth BW, and which we denote CWEW

min *

5.3.2 Description of TF-CSMA /CA

TF-CSMA /CA is based on the following two observations:

e Reaction to collisions in the frequency domain: In the presence of contention, the
stations should preferably separate their transmissions in the frequency domain. This
is because orthogonal transmissions in the frequency domain enable simultaneous
transmission of packets, and narrow bands reduce the time-domain overheads
mentioned in Section 5.2. Therefore, upon experiencing a collision, a station should
seek another spectrum band by changing its center frequency. In addition, frequent
collisions should be interpreted as a signal that the station is using too much
spectrum and should thus reduce its channel bandwidth to be able to find a free

spectrum band.

e Reaction to successes in the frequency domain: Repeated successes indicate that a
station operates alone in its spectrum band. The station should thus remain in this
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Figure 5.4 — Finite state machine of TF-CSMA/CA, as running in a station. In
addition to the contention window C'W and backof counter BC maintained by 802.11,
TF-CSMA /CA also maintains the current center frequency (C'F) and channel bandwidth
(BW). The changes with respect to 802.11 are highlighted in dark gray. The function
stick(C'F, BW) returns the center-frequency in CF gy that is the closest to C'F' (breaking
ties uniformly at random).

band or, with a small probability, try to increase its bandwidth in order to check if

it is possible to use more spectrum.

We show the operation of TF-CSMA /CA at a single station as a finite-state machine
in Figure 5.4. The stations start in any arbitrary combination of center frequency and
bandwidth. The time-domain backoff mechanism is strictly equivalent to that of 802.11.
Upon receiving a data packet from the upper layer, the station draws BC uniformly at
random in {0, ..., C’Wﬁgg — 1}. It then performs carrier sensing on the current band
that is specified by the tuple (CF, BW). For each slot during which the band is sensed
idle, the station decreases BC by 1 (the time slots have the same duration as for 802.11).
When BC reaches 0, the station attempts a transmission. If the destination station
successfully receives the frame, it sends an ACK on the same band (C'F, BW) after a
SIFS duration (not shown on Figure 5.4). If the transmission collides (as detected by
a missing ACK), the station doubles its contention window CW. If the transmission
succeeds, the station sets CW to C’Wn]fivg .

The differences compared to 802.11 are shown in dark gray on Figure 5.4 and consist
of the following additional actions. If a collision occurs, the station re-selects a new center
frequency C'F' uniformly at random. In addition, it divides BW by 2 with a probability
Bpw, which depends on the current bandwidth. In contrast, in the event of a successful
transmission, the station doubles BW with a probability «. In this case, if BW changes
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because of a successful transmission, the station also re-selects a new CF' that is as
close as possible to its current C'F'. This action is represented by the “stick” function in
Figure 5.4: the function stick(C'F, BW) simply returns the center frequency in CF gy
that is the closest to C'F' (breaking ties uniformly at random).

Note that the parameters BW and CF' play roles in the frequency domain that
are similar to CW and BC in the time domain. BW determines aggressiveness in the
frequency domain, similarly to CW in the time domain. Likewise, CF and BC' determine
the localizations of the resource chunks consumed in the frequency and time domains,
respectively.

5.3.3 Time-Domain Behavior and Configuration of C'W,,;,

As we will see in Sections 5.4 and 5.5, the stations running TF-CSMA /CA converge
to using non-overlapping spectrum bands that are well spread over the entire available
spectrum. Although TF-CSMA /CA uses the same time-domain mechanism as 802.11,
the fact that it can self-organize in the spectral domain makes it possible to configure the
time-domain backoff mechanism in a more efficient way.

When the stations use large bandwidths, TF-CSMA /CA attempts to separate their
transmissions in the frequency domain, by reducing their bandwidth and letting them
transmit on orthogonal subbands. As a result, contention can be resolved entirely in the
frequency domain and the stations operating with large bandwidths can be much more
aggressive in the time domain (i.e., employ very short backoff durations) without risking to
starve other stations. In contrast, when the stations already use narrow bandwidths (for
example, if there are many stations using orthogonal bands with the minimum bandwidth
BW,in), some stations may have to share some spectrum bands. Therefore, in this
case, the stations should also use the time domain to separate their transmissions (i.e.,
employ reasonably long backoff durations — note, however, that the time spent in backoff
represents a smaller overhead when using small bandwidths).

Overall, the importance of the time domain in the contention-resolution process should
thus depend on the bandwidth. In particular, CW%VX should be a decreasing sequence of
BW . In this paper, we propose to use CWy,;, values given by

16
cwBw |16 |
min [BW/BWMJ

This sequence is such that CWf}Xmi" = 16, which corresponds to the current de-
fault CWy,;, employed by 802.11. In 802.11ac settings, the corresponding sequence
is W2 M — 16, CWo M2 = 8 CWIO M2 — 4 and CWI50 MH= — 2,

min mwn mwn
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5.3.4 Mechanism for Adapting Contention Bandwidth

TF-CSMA/CA, as described, above uses the spectrum efficiently, but it can create
problematic situations in terms of short-term fairness. When several stations transmit
simultaneously on orthogonal narrow bands, it is possible that a given wider band,
which contains some of these narrow bands, rarely becomes entirely free. Thus, if a
station is contending on this wider band, it might have to freeze its backoff counter for
long durations. To avoid this undesirable situation, TF-CSMA /CA uses the following
additional mechanism (not shown in Figure 5.4), which incurs no performance penalty

but improves short-term fairness.

Bandwidth Adaptation after Carrier Sensing: Each station halves its bandwidth BW
with a small probability € < 1 after having sensed the medium busy due to a transmission
by another station.

Although this mechanism is simple and requires no additional state, it ensures that
each station waits on average no more than 1/e transmissions from other stations before
reducing the bandwidth on which it contends®. It is useful when there are many stations,
as it ensures that each station adapts the amount of spectrum on which it contends,
without actually experiencing a collision (or waiting for one).

5.4 Analysis and Configuration

In this section, we first introduce a Markov chain model to study the spectral self-
organization of TF-CSMA /CA. The main purpose of this analysis is to show that a simple
frequency-domain scheduling scheme based on random access such as TF-CSMA /CA can
exhibit self-organization. We conclude from the analysis that if the parameter « is small
enough, the stations spend the vast majority of their time in states without interference.
Then, in Section 5.4.2, we use the results of the analysis, as well as arguments related
to the transient regime of TF-CSMA /CA, to configure the parameters of the algorithm,
namely Bpw, a and €. In particular, the arguments related to the transient regime
consider the tradeoff between exploration (i.e., converging quickly and thus adapting to
variable traffic) and exploitation (i.e., remaining in good states as much as possible to

optimize performance).

5This way of adapting the state of the random-access mechanism as a function of the observed
contention — without actually experiencing a collision — is similar to the mechanism introduced by the
deferral counter in the IEEE 1901 MAC layer used for PLC communications [VBHT14|. The mechanism
proposed here is simpler in the sense that it does not introduce any additional state.
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5.4.1 Steady-State Model of Spectrum Consumption

Let C' := BWp42/ BWnin be the number of smallest orthogonal subbands. For simplicity
of exposition, we restrict our analysis to the case where N = C. For these values, there
exists exactly one state without interference®. We first detail our Markov chain model and
provide an example where N = 2 and C = 2 and then we extend our results to general V.
We consider the case where the N stations belong to a single contention domain, and we
assume that the channel quality is sufficiently high so that packet losses are due only to
collisions. Without loss of generality, we set BW,,;, = 1 and BW 4., = C. In addition, we
make a modeling assumption similar to the decoupling assumption introduced by Bianchi
in the time domain [Bia00], and we assume that every station attempts a transmission
with a fixed probability p at any given time slot. Let n;, 1 <1i < C, denote the number
of nodes using a band that overlaps with the ¢-th subband of width 1. We build a
discrete-time Markov chain whose states represent all the possible patterns according to
which the N stations can occupy the spectrum. Precisely, each state belongs to the set
S:=1{n;:1<i<C,0<n; <N}'. With TF-CSMA /CA, the stations change their
spectral configuration after a transmission attempt with probability « (in case of success)
or Bpw (in case of collision). Therefore, the transitions of the Markov chain from one
state to the next occur upon a transmission attempt by any one of the stations (following
the assumption of geometric backoff durations).

Example with Two Stations and Two Subbands

It is helpful to first consider the case with two stations and two subbands, as the states can
be easily enumerated. In this case there are two bandwidths: one bandwidth corresponding
to using all the band (i.e., BW = BW,4;) and the other corresponding to half of the band
(i.e., BW = BWy42/2). The Markov chain is represented in Figure 5.5. There are four
possible states, denoted A, B, C and D: They correspond to the different combinations
of spectrum occupation (the spectrum configurations of the two stations are represented
by segments in Figure 5.5). As there are only two bandwidths, we only need one g,
because the stations can only decrease the bandwidth when BW = BW,,4.; hence, we
define g8 := fpw,,..- The transition probabilities are easy to obtain from the reaction
of TF-CSMA /CA to successes and collisions. For example, the transition probabilities
from A to B and from A to D are %pﬁQ, because the other station (the one that does not
trigger the state transition) has to transmit (which happens with probability p) and the
two stations have to independently choose to reduce their bandwidth (with probability

B3%).

5The case N < C corresponds to an easier problem, in terms of finding interference-free assignments,
and it can be treated similarly. Note that there does not exist a state without interference when N > C.
Yet, we will see in Section 5.5 that TF-CSMA /CA performs extremely well for all V.

"Note that S describes the set of all possible states, also if stations could fragment their spectrum
arbitrarily among the C' subbands. When the stations do not fragment their spectrum (as is the case for
TF-CSMA/CA), the possible spectral patterns belong to a subset of S.
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Figure 5.5 — Markov chain for the case of two stations and two bandwidths. The states
are denoted A, B, C and D and the spectrum settings for the two stations within each
state are shown by segments. We do not show self-transition probabilities as they would
provide redundant information.

In the case under study, the most desirable state is D because there is no frequency-
domain interference and the whole spectrum is used in this state. The following theorem
shows that, if « is small enough, TF-CSMA /CA spends an arbitrarily large fraction of
time in state D.

Theorem 2. Let m; be the stationary distribution of state i € {A, B,C, D}. We have

— 1 5.1
™ (5.1)

Proof. Using the balance equation for D, we get
) 1, 1 1
mp =7p(l —a—pa’)+ 7TA§pr3 + TBoP + WCzPB-
Let us define 8’ := min{%pﬁ, %pﬂQ}. We have

(a+pa®)mp> Y mf,

i€{A,B,C}
and thus ,
D > s .
Yic{apcyTi o+ pa
which in turn implies (5.1). O

Theorem 2 also holds if & = 0, in which case D trivially becomes an absorbing
state. However, in this case the chain is no longer ergodic and, for general configurations
of N and C, it might remain “stuck” in absorbing states that avoid interference but
under-utilize the spectrum. For this reason, TF-CSMA /CA employs a small but non-zero
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Figure 5.6 — Proportion of time spent in states A, B, C and D for the Markov chain of
Figure 5.5 and a packet-level simulation of TF-CSMA /CA, with the settings p = 0.05,
a=10"3and § = 1.

value of o (we elaborate further on this point in Section 5.4.2 as well as in the simulations
of Section 5.5). In Figure 5.6, we show the fraction of time spent in the states A, B,
C and D by the Markov chain of Figure 5.5, as well as by packet-level simulations of
TF-CSMA /CA (see Section 5.5 for more details on our simulation settings). Although
our proposed Markov model makes simplifying assumptions, it correctly captures the
tendency of TF-CSMA /CA to spend the vast majority of the time in the best possible
state in this scenario.

N Stations and N subbands

We now extend Theorem 2 to the general case of N subbands (with C'= N).

Theorem 3. Let s* € S be the (unique) interference-free state. We have

Tge — 1. (5.2)
al0

Proof. Let us denote the bandwidth used by a station u in state s € S by BW;]. We
define

S = {s © max }{BWi} < 2} \ {s*},

ued{l,...,N

which is the set of states that are one transition away from s*.

For any two states s and s’, let P,_, denote the transition probability from s to s’.
Now, when the network is in state s* and a station transmits, there could be a random
number, say k, of other stations transmitting at the same time, and k follows a binomial
distribution of parameters N — 1 and p. Then, the network remains in state s* if and
only if none of the k + 1 transmitting stations decides to double its bandwidth. Therefore,
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the probability of staying in state s* is

N-1

Py _yor = Z <Nk— 1>pk(1 _p)Nflfk(l _ a)k+1
k=0
N-1
— (1 — a) Z <Nk— 1) (p(l _ a))k(l _p)N*lfk

We can therefore use the balance equation for s* to obtain

T > T (1= Na) + > wePasyon.
sEST

Let Bmin := mingw {Baw}. It is easy to see that Py o > C™VpVN =1 (Bin) for any
state s in &1. We thus have

e Z 7]'5*(1 — NO() + Z FscinNil(ﬂmin)N7
SEST

from which we obtain N1 N
Trg* > P (Bmzn)
Yoses, s  CNNa

and thus, for any state s € Sy,
s < A(Na)mgs, (5.3)
with A = OV /(pN 1 (Bin) ).

We now need to iterate this reasoning over the states that are not in S; and need
more than one transition to reach s*. To this end, we extend the definition of S; and
define S := {s tmaxyeq,. Ny 1BW = Zk}, for k > 2. Now, for any k& > 2 and any
state si, € S, let N, denote the set of stations that use bandwidth 2% in s;. Note that
|Ns,.| > 0 by construction of S, and so there exists a state sy_1 € Si_1 that is obtained
by halving the bandwidth of the stations in s that use bandwidth 2¥ (and having them
use any valid center frequency). It is again easy to see that Ps, s, , > C —NpN-1 (Bmm)N
and so from the balance equation of s;_1, we obtain

N—-1,oN

min-

Tsp_1 > sy, C_Np

We can now iterate this argument & times and combine it with inequality (5.3) in order
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to obtain (noting that k < [log,(N)])
Ty < Al (M (N @)

for any possible state s € S, which concludes the proof. O

Theorem 3 shows that, by setting « sufficiently small, we can ensure that TF-
CSMA /CA spends most of the time in the most desirable state. Based on this and other
considerations, we next discuss the setting of o, as well as the other parameters of the
algorithm.

5.4.2 Parameters Configuration

Let us now give some high-level comments on the setting of the parameters of TF-
CSMA /CA, namely «, Spw and e.

Let us start with Sy . A collision indicates that a station uses a band that overlaps
with another station. In this case, the station should change its center-frequency and
find a new (hopefully non-overlapping) band, and, if it is using a bandwidth that is too
large to find a free spectrum band, it needs to reduce it. The average number of collisions
needed to reduce BW is given by 1/8pw: this determines the time that a station has
to find an interference-free configuration. Therefore, on the one hand, Sy should be
sufficiently small so that the stations are given enough time to find an interference-free
configuration, if it exists, before reducing their bandwidths. On the other hand, it should
not be smaller than needed, as otherwise the stations might lose time looking for an
interference-free configuration that does not exist, thus harming the overall convergence
of the algorithm.

Hence, in order to find an appropriate setting for Spy, we need to compute the time
needed to find an interference-free configuration for a given bandwidth, in situations
where the stations should not reduce their bandwidth. This problem is similar to the one
addressed in [BKSS13|, which analyses the time it takes a balls-into-bins algorithm to
find a configuration in which all bins have the same number of balls (in our particular
case, one ball). In the algorithm of [BKSS13|, each ball samples randomly each bin until
it finds an empty one. This is similar to our algorithm when we have N stations that are
using subbands of bandwidth equal to BW,,,4,/N. In our case, when a station is in a
non-empty subband, it detects this through a collision and randomly chooses another
subband until it finds a free one. According to the analysis of [BKSS13], the time it takes
to find such a configuration is O(N).

Based on the above reasoning, in our configuration of Sy, a station sets this parameter
equal to ¢- BW, where c¢ is some constant. Indeed, following the above rationale, when a
station is using a small value of BW it is likely to contend with O(1/BW) stations and
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thus the time needed to find an interference-free configuration will be given by O(1/BW);
hence, in this case we set Spyw = O(BW). For the choice of ¢, we set it such that when a
station is using BW,qz, we have Bpw,,,. = 1 (which is clearly the best configuration for
this scenario), which leads to Spw = BW/BWpas.

As for the setting of «, based on the analysis of the previous subsection, we note that
it should be set to a small value, so that the stations experiencing successful transmissions
tend to remain on the same band. Whereas, setting « to a non-zero value enables the
stations to reclaim possibly unused spectrum. Based on our evaluations of Section 5.5,
we set o = 1073, as we observe that it performs well in all settings.

Finally, we set € based on the following reasoning. If we set € = 1/x, then a station
has to wait on average up to = transmissions before halving the bandwidth on which it
contends, which means that it might not be able to transmit during this time. Based
on this, we set € = 1072, so that each station waits on average for no more than 100

transmissions before halving its bandwidth.

5.5 Performance Evaluation

5.5.1 Simulation Settings

We developed an event-driven packet-level simulator in Python. Our simulator is very
similar to several other simulators that have been used in the past to model various
MAC layers (see e.g., [DDT09]). We simulate TF-CSMA /CA with the same per-frame
timing overheads described in Section 5.2 (time slot, SIFS, DIFS, PHY headers and
ACK durations). We assume that each station achieves a physical rate proportional to
its channel bandwidth, which corresponds to what is observed empirically [CMM™T08].
Unless otherwise stated, we use 802.11ac settings and set BW,,, = 160 MHz and
BWpin = 20 MHz (and so the set of bandwidths available is {20, 40, 80,160} MHz).
When simulating the 802.11 DCF (i.e., without our extensions to the frequency domain),
we use the whole 160 MHz channel and the default configuration CW,,;, = 16 and
CWinaz = 1024 (i.e., 7 backoff stages). TF-CSMA/CA is also simulated with 7 backoff
stages in the time domain. In line with 802.11ac, for each bandwidth BW, we use
the set of center frequencies CF gy such that all available bands of width BW do not
overlap |Gas13]. The default parameters, which we use unless otherwise specified, are
summarized in Table 5.1. We consider scenarios where all the stations interfere with
each other (complete interference graph) and each station always has a packet to send
(saturated traffic), except in Section 5.5.4, where we consider scenarios with non-complete
interference graphs and non-saturated traffic. Finally, in order to isolate the effects of
the random-access mechanism, we assume that there is no error due to channel noise
(hence all packet losses happen due to collisions). Unless otherwise stated, we use a
physical rate of 600 Mbps and 1 kB frames. Each configuration is evaluated using 10
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BW  CWBY  Bpy  PHY rate

min

160 Mz 2 1 600 Mbps
80 MHz 4 1/2 300 Mbps
40 MHz, 8 1/4 150 Mbps
20 MHz 16 - 75 Mbps

Table 5.1 — Default parameters used for simulations.
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Figure 5.7 — Comparison of TF-CSMA /CA with 802.11, optimal TDMA and 802.11
operating with optimal spectrum assignment.

independent simulation runs lasting at least one second of simulated time (which is
much larger than convergence times and typically corresponds to several thousands of
transmission attempts).

5.5.2 Efficiency and Fairness

In Figure 5.7, we show the throughput obtained by TF-CSMA /CA as a function of the
number of stations N, and we compare it against several other scheduling mechanisms: (i)
“802.11 default” denotes 802.11 operating with its default configuration on the single wide
band channel; (ii) “optimal TDMA” shows the performance obtained with a perfect TDMA
scheme that uses N distinct time slots for a network with N stations (this corresponds,
for instance, to the steady-state of the scheme proposed by Fang et al. [FMDL13]) and
this is also an upper bound on the performance achievable by any enhancement of 802.11
that does not employ channelization (e.g., [Bia00, PBSA11]); (iii) “optimal spectrum”
shows the performance obtained when all stations share the spectrum optimally (i.e.,
spreading their spectrum as evenly as possible). Obtaining this “optimal spectrum”
configuration requires perfect information and is an upper bound of what can be achieved
using centralized knowledge for the spectrum assignment.
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Figure 5.8 — Short-term unfairness o;rx and collision probability, for 802.11 and
TF-CSMA /CA (denoted “TF”).

Clearly, even perfect scheduling in the time domain using TDMA is less efficient than
a mixture of time and frequency scheduling. Even though TF-CSMA /CA is completely
decentralized, its backoff and frequency-repartition mechanism provides significant per-
formance gains compared to time-domain scheduling, and achieves performance close
to what can be obtained using a perfect centralized spectrum assignment. For N = 1,
throughput is increased by roughly 1.5x due to a reduction in backoff durations — the
performance in this case is similar to TDMA that sends packets back-to-back. For N > 1,
splitting transmission onto smaller bandwidths provides important gains (up to more
than 5x in this setting).

Importantly, these gains are not obtained at the price of short-term fairness. In
Figure 5.8, we show o;px and the collision probability obtained by TF-CSMA /CA and
802.11. TF-CSMA/CA achieves significantly better short-term fairness and smaller
collision probabilities, which is a direct result of the parallelization of transmissions onto
orthogonal subbands.

The gains provided in the frequency domain depend on the PHY rate and frame sizes.
In Figure 5.9, we show the performance increase provided by TF-CSMA /CA for various
PHY rates and frame sizes. As expected, the gains are the largest for high PHY rates and
small packet sizes (i.e., for small overall transmit delays). Note that for the unlikely cases
where large frames are transmitted at low PHY rates, TF-CSMA /CA can be slightly less
efficient than 802.11. This is because, in these regimes, the efficiency of 802.11 is high,
and the small inefficiency introduced by TF-CSMA /CA in the frequency domain is not
compensated by significant gains in the time domain. However, such configurations are
unlikely to happen in practice, as the oldest Wi-Fi standards with low PHY rates usually
do not use frame sizes larger than 1500 B (they do not need to employ aggregation as
their efficiency is already satisfactory).
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Figure 5.9 — Ratio between the efficiency of TF-CSMA /CA and that of 802.11 for
N = 5. Larger gains occur for smaller transmission delays.
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Figure 5.10 — Interference and spectrum usage over time for N = 5. TF-CSMA /CA
balances well the two conflicting goals of minimizing interference while maximizing
spectrum usage. Furthermore, convergence to steady state happens within 50 ms.

5.5.3 Interference and Self-Organization

TF-CSMA /CA trades off a very high time-domain inefficiency for some frequency-domain
inefficiency. Furthermore, by adapting their spectrum bands, the stations pursue the two
conflicting goals defined in Section 1.1.1: On the one hand, they aim to avoid using bands
that are also used by other stations. On the other hand, they also try to use as much
spectrum as possible in order to maximize their transmission rates.

To quantify how well TF-CSMA /CA reaches these goals, we define the interference
as the fraction of the total spectrum that is used by more than one station at any given
time. Similarly, we define the spectrum usage as the fraction of total spectrum used by
at least one station. In Figure 5.10, we show the interference and spectrum usage over
300 ms of traces (averaged over 100 indepedent simulation runs using windows of 1 ms)
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Figure 5.11 — Average values of BW and CW selected by TF-CSMA /CA. The optimal
spectrum consumption is given by 160/N MHz and shown by the dotted line (partly
indistinguishable from the BW curve).

for N = 5 stations. All stations start with the same center frequency and bandwidth
BW,az- Although 5 stations are competing for access, TF-CSMA /CA converges to
interference-free spectrum allocations. The nodes spend little transient time using the
same spectrum and rapidly self-organize to use the spectrum efficiently; about 70% of
the spectrum is used on average. Furthermore, because TF-CSMA /CA acts at the very
fast time-scale of packets (re-)transmissions, convergence to steady-state is fast, within
about 50 ms — even though the network started in a highly inefficient state in terms of

spectrum assignment.

In order to illustrate how resource allocation is performed in time and frequency
domains, we show in Figure 5.11 the average BW and CW parameters that are selected by
the stations, as a function of N. Ideally, if all stations were to perfectly share the spectrum,
each station should converge towards using a bandwidth BW given by BW,,,4,/N (shown
by the dotted line on Figure 5.11). It turns out that TF-CSMA /CA selects values for BW
that are on average very close to optimal. This is remarkable, considering that the stations
do not know N®. Note that for N > 8, TF-CSMA /CA uses mostly BW = 20 MHz, as
this is the minimum available bandwidth.

5.5.4 Dynamic Traffic and Random Topologies

The probability « of doubling BW after a successful transmission responds to a tradeoff
between exploration and exploitation. A small « ensures that the stations spend most of
their time in states that minimize interference (see Section 5.4). However, a non-zero « is
needed to regain available spectrum (for instance, in case the stations that were using

8Estimating N is not trivial; for instance, a number of works to find the optimal CW,,;, in 802.11
have designed algorithms to estimate N in some way [Bia00, PBSA11].
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Figure 5.12 — Throughput as a function of average traffic load with NV = 5. All stations
have a fixed average “off” duration set to 1/u = 100 ms and their average “on” duration

1/ is varied between 1 ms (the stations are nearly silent) and 4 s (the stations are nearly
backlogged).
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Figure 5.13 — Traffic sent over 5 seconds of simulated time, as a function of the average
spatial density of the network topology.

that spectrum have left) and to ensure high utilization of the overall spectrum. We thus
expect that a large a should favor situations with high traffic variability, whereas a small
« should improve performance in steady state.

To quantify this effect, we introduce random traffic patterns as follows. The packets
are generated by an exogenous on/off process at each station. The “on” durations
are exponentially distributed with mean 1/\ and the “off” durations are exponentially
distributed with mean 1/u. In addition, the frame sizes are also exponentially distributed
with mean 1 kB. In the following experiment, we set 1/u = 100 ms, and we vary 1/
between 1 ms and 4 s. In Figure 5.12, we show the throughput obtained in these settings,
as a function of the resulting average traffic intensity u/\. As expected, a large o improves
performance when p/) is small (bursty traffic). This is because the stations experience
little contention and gain from re-using the spectrum more aggressively. However, even
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Figure 5.14 — Comparison of TF-CSMA /CA (denoted “TF”) and FICA, for two different
amounts of payload traffic available in the upper layer’s buffer.

when using a relatively small o = 1072 while the traffic is highly dynamic and bursty,
TF-CSMA/CA performs at least as well as 802.11 (which uses the whole spectrum band).

This observation still holds when traffic intensity varies not only in time, but also in
space. We make an experiment where the N stations are spread uniformly at random on
a 100mx100m square and use an interference radius of R = 30m (that is, two stations
separated by a distance less than R cannot transmit successfully at the same time on
overlapping bands). In Figure 5.13, we measure the traffic sent when the number of
stations varies between N = 1 and N = 512, for different average traffic intensities
(using the default value a = 1073). When the stations do not suffer from contention, TF-
CSMA /CA and 802.11 offer comparable performances. The gain offered by TF-CSMA /CA

increases with traffic intensities and spatial densities.

5.5.5 Comparison with FICA

We close this section by providing a comparison with the frequency-domain backoff
scheme proposed by FICA [TFZ"10|. With FICA, the spectrum band is divided into
several subchannels, and each station can use one or several subchannel(s) (not necessarily
contiguous). FICA introduces a form of RT'S/CTS signaling, and the transmissions occur
in rounds; all transmitting stations have to simultaneously send an RTS signal and the
receiving station elects winner(s) for each subband and announces them using a CTS
signal. Note that, compared to FICA, TF-CSMA /CA is considerably simpler, as it does
not require any signaling or synchronized transmissions.

The authors of FICA recommend splitting payload traffic into 1.6 kB frames to send
over each subchannel for a case with a PHY rate of 580 Mbps and 14 subchannels [TFZ"10].
In our case we use only 8 subchannels, hence we scale this threshold correspondingly and
configure FICA to send 2.8 kB frames on each subchannel. Note that this means that
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FICA might need to access up to 22.4 kB (8 x 2.8 kB) of payload traffic in the upper
layer’s buffer, when a station decides to transmit on all subchannels simultaneously. We
therefore consider two scenarios that correspond to two different saturation levels: (i)
the upper layer’s buffer always contains 22.4 kB of payload traffic (in which case, FICA
can send up to 8 frames of 2.8 kB simultaneously and TF-CSMA /CA can send a unique
frame of 22.4 kB); and (ii) the buffer always contains 2.8 kB of payload traffic (in which
case FICA sends a 2.8 kB frame on a unique subchannel and TF-CSMA /CA also sends a
2.8 kB frame on its unique band). For FICA, we use 16 subcarriers in each subchannel
for contention resolution and, in the 22.4 kB case, we use the proposed AIMD algorithm
for choosing the number of subchannels used for transmission.

We show the results in Figure 5.14. For both saturation levels, TF-CSMA /CA
outperforms FICA, even though TF-CSMA /CA does not rely on control traffic or syn-
chronization primitive in order to organize transmissions. This is mainly due to the fact
that FICA introduces extra per-frame overheads for the RTS/CTS signaling in order to
explicitly organize transmissions. Such coordination is not needed by TF-CSMA /CA,
because it provides self-organization in a purely random-access fashion. Note that, for
large N, FICA performs better when only 2.8 kB is available in the transmit buffer. This
is because, in these regimes, it is nearly always beneficial to use a single subchannel.
Note also that, for large frames, TF-CSMA /CA performs significantly better for N = 1
compared to N = 2. This is because a unique station always uses the full spectrum
band (which is efficient in this case), whereas a scenario with more stations can be less
efficient due to the randomness of self-organization. In contrast, for larger N values,
TF-CSMA /CA stations almost always contend using the smallest bandwidth, which is

less challenging in terms of self-organization.

5.6 Related Work

Several recent works have shown the practical feasibility of flexible (or fine-grained) chan-
nelization [RSBC11, TFZ 110, CRB*12, YHC'10, CLL"12, YKQ13|. Among these, [RSBC11|
and [YKQ13] propose schemes to schedule packets in time and on variable amounts of
spectrum, but both algorithms rely on a central controller to take the scheduling decisions.
[TFZ*10] proposes an extension of CSMA/CA to frequency domain, but it relies on
explicit signaling (similar to RTS/CTS) sent on OFDM subcarriers and is sensitive to
synchronization issues. [CRBT12| presents a novel radio design that enables the 802.11
DCF function to run independently on several narrow channels. However, the proposed
mechanism to decide the subchannel(s) on which each link should contend needs to
measure the residual airtime and number of contenders in all subchannels. Such an
approach does not let stations to choose their spectrum on a per-packet basis and is closer
to spectrum assignment schemes acting at slower timescales (such as those proposed in
previous chapters). In addition, it increases efficiency without requiring buffering only if
there are enough stations contending: When there are only one or a few stations, splitting
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the wideband in several narrow bands to send several longer frames in parallel requires
buffering more payload traffic. In contrast, in these regimes, TF-CSMA /CA increases
efficiency by letting the stations be more aggressive in the time domain.

Some works consider the problem of scheduling packets in the context of flexible
channelization. [MCW™08|] considers the optimization problem of efficiently packing
time-spectrum blocks, but the proposed algorithms require centralized control. [MJST09]
considers running independent 802.11 DCF on several subchannels (similar to [CRB*12]),
but does not address the problem of deciding how much spectrum should be used by each
station. Very recently, [FZD15| proposed an algorithm for scheduling packets in time
and frequency domains, but here too the proposed mechanism requires additional control
traffic and synchronization (as transmissions occur in synchronized rounds). [KSKL09]
proposes a generalization of CSMA /CA to contend on several subchannels with variable
intensities in the time domain. However, the stations always use a fixed channel for
transmission and do not modulate their access intensity in the spectral domain. In
addition, different techniques have been proposed to reduce the time-domain inefficiencies
of Wi-Fi [SRCN11, MCRR11, FZZL12|. For example, [SRCN11]| shows that it is possible
to improve backoff overheads by resolving contention using signaling on OFDM subcarriers
in the frequency domain. However, in these cases, the stations always use a fixed channel
and, although contention resolution can be done in the frequency domain, the stations do
not perform backoff in the frequency domain. Furthermore, we have seen in Section 5.5
that even completely removing the backoff overhead (using perfect TDMA) provides little
gain compared to separating transmissions in the frequency domain.

In contrast to all the above works, TF-CSMA /CA is the first one to adapt both
the time and frequency domain consumptions at the scheduling layer, using no explicit
signaling but only collisions, successes and carrier sensing as implicit signals.

5.7 Summary

We have proposed TF-CSMA /CA, a scheduling algorithm that adjusts both the time and
frequency access intensities in a random-access fashion. In contrast to existing schemes
acting in time and frequency domains, TF-CSMA /CA is completely decentralized and
reacts only to collisions, successes and carrier sensing. Overall, relying only on transmission
outcomes provides a simple and effective way to assign spectrum to stations directly at
the MAC layer, in a way that departs from the usual “reservation-based” view of spectrum
usage, but that is rather determined by instantaneous traffic loads, just like CSMA /CA
in the time domain. We have shown that (i) it provides self-organization in the spectral
domain; (ii) although it is completely decentralized, it outperforms perfect time-domain
scheduling, and (iii) it provides performance close to what is achievable when a centralized
controller directly assigns spectrum to 802.11 nodes in a perfect (but monolithic) fashion.

103



Chapter 5. Scheduling in Time and Frequency Domains

With TF-CSMA /CA, the stations probabilistically reduce their spectrum usage in case
of interference (with a relatively large probability Spw ), and they occasionally attempt to
regain unused spectrum when there is no interference (with a small probability «/). In this
sense, TF-CSMA /CA takes a direct approach for balancing a minimization of interference
with a maximization of spectrum usage. This is similar to SAW, proposed in Chapter 2,
which minimizes the sum of a relatively large interference cost and a small but non-zero
spectrum-usage cost. Compared to the algorithms proposed earlier, TF-CSMA /CA is
further away from being implementable on off-the-shelf hardware. However, it provides
important advantages, perhaps most notably because it acts at a much faster timescale
(that of packet-transmission opportunities) and thus provides a greater flexibility.
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Conclusions

In this thesis, we propose new techniques for finding efficient spectrum allocations in a
flexible way. The success of Wi-Fi, together with the tendency of recent physical layers
to rely on employing more spectrum, makes it increasingly important to find efficient
ways of assigning variable-width channels to concurrent wireless links. In this context, a
recurring challenge in finding efficient configurations is the need for balancing interference

with capacity.

The algorithms proposed in this dissertation approach this challenge from different
perspectives. In Chapter 2, we propose SAW, an algorithm that optimizes an explicit sum
of two terms that capture interference and spectrum usage. This algorithm runs at the
APs without requiring control traffic and it re-evaluates the spectrum configurations every
few minutes. We have seen that it provides important performance gains, irrespective
of network density, and even when some APs behave in a selfish manner. In Chapter 3,
we observe that the performances obtained by interfering wireless nodes that are subject
to different spectrum and traffic conditions exhibit intricate patterns that are due to
complex interactions between the MAC and the PHY layers. We predict performances
by treating this problem as a pure regression task, and we show that it is possible to
learn implicit performance models from a set of real-world measurements. This technique
outperforms other measurement-seeded models, and it generalizes well to unseen links and
environments. In Chapter 4, we take advantage of these sophisticated performance models
to formulate a utility-optimal algorithm for the joint allocation of channel center-frequency,
bandwidth and transmit power. In this setting, the APs need to collaborate and exchange
control messages in order to predict performances and to weigh the gains in utility provided
by each configuration. Hence, we propose an accompanying neighbor-discovery protocol,
whereby neighboring APs exchange their public IP address for subsequent collaboration.
Using testbed experiments, we observe that it is possible to drive the network to operate
in different regimes of efficiency, fairness and load balancing, as determined by the
utility functions. Finally, in Chapter 5, we study the spectrum-assignment problem as
a packet-scheduling problem. We propose TF-CSMA /CA, an extension of the backoff
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Chapter 6. Conclusions

mechanism of 802.11 to the frequency domain. With TF-CSMA /CA, the stations seek to
avoid interference by reducing their spectrum usage and hopping to a new band when
experiencing a collision. Conversely, they also seek to maximize spectrum usage by
increasing their bandwidth when experiencing a successful transmission. We show that
TF-CSMA /CA provides a form of self-organization. Furthermore, we observe that, even
though it acts in a completely decentralized fashion without relying on any form of control
traffic, TF-CSMA /CA provides excellent performances, comparable to 802.11 operating
with optimal spectrum settings.

Although we have focused on the algorithmic aspects of the spectrum-assignment
problem in this thesis, more steps need to be taken in order for such schemes to be become
ubiquitous. In particular, standardization bodies should study the potential inclusion of
frequency-domain behaviors in future standards, similarly to what was done to describe
the backoff mechanism in the time domain.

As for future perspectives, we believe that the most promising directions for improving
Wi-Fi performance in the long term will come from an efficient use of flexible-channelization
systems. In particular, the tendency of current networks to rely on increasing amounts
of statically-assigned spectrum has two undesirable effects. First, it is increasingly
shifting the collision-avoidance process to the time domain, which puts more stress on the
time-domain backoff procedure (as more and more networks are contending for access).
Second, this time-domain operation is itself becoming increasingly inefficient, notably
because of the use of wider bandwidths. This tendency contrasts with legacy networks
operating on narrower spectrum bands, where transmissions are easier to separate in
the frequency domain (at slower timescales), but for which the raw transmission speeds
are lower. We therefore think that random-access algorithms performing backoff in both
time and frequency domains, such as TF-CSMA /CA, represent promising solutions to
achieve the best of both worlds in practice (i.e., maintaining a high efficiency while still
accommodating large transmission speeds and small buffers). Hence, some interesting
research directions include the characterization of the maximum capacity achievable by
such random-access procedures, and how close they can get from being optimal (compared
to centralized schemes operating with full information). In addition, a natural next step
is to implement spectrum-assignment schemes of the flavor of TF-CSMA /CA on real
hardware.

106



Wireless Testbed

We built a wireless testbed in order to evaluate the algorithms proposed in Chapters 2
and 4, as well as the capacity estimation technique proposed in Chapter 3. Our testbed
comprises 22 Wi-Fi nodes that are spread over the second floor of the EPFL BC building,
as shown on Figure A.1.
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Figure A.1 — Testbed layout.

In this appendix, we provide some technical details about our testbed. Our main
purpose is to provide helpful information for other groups who want to build similar
testbeds.

A.1 Hardware

The nodes are PCEngines Alix 2D2 boards'. These boards have a 500 MHz AMD Geode
CPU, 256 MB of RAM, two mini-PCI slots and two Ethernet interfaces. They very
conveniently support PXE boot (see next section) and PoE (Power over Ethernet). In
addition, they are low-power (about 3-4W when idle, and about 6W of peak consumption
without mini-PCI devices) and relatively inexpensive (about 100 CHF for the board at

"http://www.pcengines.ch/alix2d2.htm
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Appendix A. Wireless Testbed

the time of writing). We use one Wistron DNMA92 mini-PCI radio card per board as
to serve as the Wi-Fi interface. These cards use the Atheros AR9220 chipset, which
provides 802.11a/b/g/n operation in both 2.4 GHz and 5 GHz bands. They have two
antennas and support up to 2 x 2 MIMO with 802.11n, for PHY-layer data rates of up
to 300 Mbps. Our boards are equipped with CompactFlash cards of 8 GB. As we will
explain in the next section, although we use PXE for booting, the nodes also store a
standalone Linux system on their flash cards. Finally, let us also mention that some
of our boards are also equipped with an additional mini-PCI card that can be used for
power-line communications (which we did not use in this thesis). These cards use the
Intellon INT6300 chipset and support HomePlug AV operation with data rates up to
200 Mbps.

A.2 Software

A.2.1 System

The nodes run the OpenWrt Linux distribution?. This distribution targets embedded
devices and it provides good support of the Alix boards and a large range of wireless
devices. For the Wi-Fi cards, we use the open-source ath9k Atheros driver. All our nodes
are connected to an Ethernet plug operated by the EPFL IT services, but all the plugs
used by our testbed are configured to belong to an isolated VLAN. We use PXE for
loading the operating system, so that when booting, the nodes receive the kernel directly
through one of their Ethernet interface. In addition, the file systems of the nodes are
accessed via NFS. Hence, we use two additional servers: an NFS server stores all the file
systems as well as a Linux kernel used by all the nodes, and another server provides DHCP
and PXE support. This way of storing the kernel and file systems is very convenient; it
ensures that all nodes run the same software, and it makes it possible to re-compile a
new version of the operating system (or the kernel) and very quickly distribute it to all
nodes, without having to update their individual storage. In addition, it also serves to
gather all the files created by all the nodes centrally on the NFS server. This is helpful
for processing experiment results (which usually come in the form of log files stored by
the nodes) in a centralized fashion. Finally, the nodes use the hardware watchdog of the
Alix board in order to provide reliable operation in case of a critical failure, such as a
kernel panic or a crash of the ssh daemon: the software regularly checks the state of the
network and filesystem, and it sends a notification signal to the hardware watchdog. If
the watchdog is not notified after a timeout, it triggers a reboot. If there is a failure
when booting using PXE, the nodes load an alternative standalone Linux system that is
stored on their flash card. This system is configured to reboot after a few minutes. This
ensures that, even if there is a problem with one of the servers, the nodes keep re-trying
to reboot using PXE until the problem is solved.

2http://openwrt .org
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A.3. Changing Spectrum Configurations

A.2.2 Experiments

We use Click [KMC100] for most of our experiments. We find this framework very
convenient, as it enables us to implement complex network stacks, while focusing only
on relevant packet-processing tasks. Click can run either in userspace or as a kernel
module. We run it in userspace, mainly due to technical difficulties® and for convenience
(as userspace lets us use more libraries and floating-point expressions). In order to capture
the PHY rate in the packets’ header (as needed in Chapter 2 to compute airtimes and
in Chapter 3), we had to modify the Click element in charge of parsing the radiotap
headers (which are the headers used by interfaces in monitor mode).

We also wrote a set of Python scripts that enable us to easily describe and launch
experiments from one of the two servers. These scripts contain a set of Python objects
that describe nodes and links, and which offer procedures to change configurations, launch
or interrupt Click, launch or interrupt traffic, etc. Overall, these scripts help us make

sure that all our experiments are performed in consistent ways.

A.3 Changing Spectrum Configurations

To implement the algorithms of Chapters 2 and 4, we need the ability to dynamically
change the spectral configurations employed by the nodes. For 802.11g (used in Chapter 2),
we add a debugfs entry in the ath9k driver, in order to read/write the channel and
channel bandwidths via dedicated debugfs files, without restarting the network. With
this approach, we can configure our cards to use bandwidths of 5 and 10 MHz (in addition
to the default 20 MHz). We used a signal analyzer to measure the spectral footprints of
our hardware when using channel bandwidth of 5, 10 and 20 MHz, shown in Figure A.2.

5 MHz 10 MHz 20 MHz
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Figure A.2 — Spectrum footprint of the AR9220 cards using bandwidths of 5, 10 and
20 MHz.

802.11n readily supports bandwidths of 20 and 40 MHz. In this case, we use the iw
tool for configuring the channel and bandwidth. However, by default iw refuses to change
the configuration when the network is up. We thus modified the file cfg.c of mac80211
in order to bypass the check and accept live re-configuration.

3Using Click as a kernel module together with ath9k caused repeated crashes in our case.
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